Vol. 107
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-09
On the Validity of Born Approximation
By
Progress In Electromagnetics Research, Vol. 107, 219-237, 2010
Abstract
Born approximation is widely used in (inverse) scattering problems to alleviate the computational di±culty, but its validity and applicability are not well defined. In this paper, a universal criterion to identify the validity of Born approximation is put forward based on applying the operator theory on the scattering integral equation. In comparison with the traditional criteria, the new one excels in its ability to give a wider and more rigorous valid frequency range, especially while non-uniform scatterers are under consideration. Numerical examples verify the validity and advantage of the new criterion.
Citation
Jianbing Li, Xuesong Wang, and Tao Wang, "On the Validity of Born Approximation," Progress In Electromagnetics Research, Vol. 107, 219-237, 2010.
doi:10.2528/PIER10070504
References

1. Ballentine, L. E., Quantum Mechanics: A Modern Development, 672, World Scientific Publishing Company, 1998.

2. Van Deb Berg, P. M., "Iterative computational techniques in scattering based upon the integrated square error criterion," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 10, 1063-1071, 1984.

3. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983.

4. Born, M. and E. Wolf, Principles of Optics, 7 Ed., Cambridge University Press, 1999.

5. Bucci, O. M., N. Cardace, L. Crocco, and T. Isernia, "Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems," J. Opt. Soc. Am. A, Vol. 18, No. 8, 1832-1843, 2001.

6. Chen, B. and J. J. Stamnes, "Validity of diffraction tomography based on the first Born and the first Rytov approximations," Appl. Opt., Vol. 37, No. 14, 2996-3006, 1998.

7. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

8. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 356, Springer, 1998.

9. Crocco, L. and M. D'Urso, "The contrast source-extended Born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.

10. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 2, 339-345, 2001.

11. Durgun, A. C. and M. Kuzuoglu, "Computation of physical optics integral by Levin's integration algorithm," Progress In Electromagnetics Research M, Vol. 6, 59-74, 2009.

12. Fan, Z., R.-S. Chen, H. Chen, and D.-Z. Ding, "Weak form nonuniform fast fourier transform method for solving volume integral equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.

13. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE Press, 2001.

14. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.

15. Isernia, T., L. Crocco, and M. D'Urso, "New tools and series for forward and inverse scattering problems in lossy media," IEEE Geoscience and Remote Sensing Letters, Vol. 1, No. 4, 327-331, 2004.

16. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, 1978.

17. Kak, A. C. and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988.

18. Karris, S. T., Signals and Systems with MATLAB Computing and Simulink Modeling, 3 Ed., Orchard Publications, 2006.

19. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & Sons Inc, 1978.

20. Li, J., X. Wang, and T. Wang, "A universal solution to one-dimensional highly oscillatory integrals," Science in China, Vol. 51, No. 10, 1614-1622, 2008.

21. Li, J., X.Wang, T.Wang, and C. Shen, "Delaminating quadrature method for multi-dimensional highly oscillatory integrals," Appl. Math. Comput., Vol. 209, No. 2, 327-338, 2009.

22. Li, J., X. Wang, T. Wang, and S. Xiao, "An improved levin quadrature method for highly oscillatory integrals," Appl. Num. Math., Vol. 60, 833-842, 2010.

23. Matzler, C., "Matlab functions for mie scattering and absorption,", Technical report, Institute of Applied Physics, University of Bern, 2001.

24. Carruth McGehee, O., An Introduction to Complex Analysis, John Wiley & Sons Inc, 2000.

25. Mojabi, P. and J. LoVetri, "Adapting the normalized cumulative periodogram parameter-choice method to the tikhonov regularization of 2-D/TM electromagnetic inverse scattering using Born iterative method," Progress In Electromagnetics Research M, Vol. 1, 111-138, 2008.

26. Nordebo, S. and M. Gustafsson, "A priori modeling for gradient based inverse scattering algorithms," Progress In Electromagnetics Research B, Vol. 16, 407-432, 2009.

27. Leonard, L. S., Quantum Mechanics, McGraw-Hill, 1968.

28. Shariff, K. and A. Wray, "Analysis of the radar reflectivity of aircraft vortex wakes," J. Fluid Mech., Vol. 463, 121-161, 2002.

29. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.

30. Trattner, S., M. Feigin, H. Greenspan, and N. Sochen, "Validity criterion for the Born approximation convergence in microscopy imaging," J. Opt. Soc. Am. A, Vol. 26, No. 5, 1147-1156, 2009.

31. Trattner, S., M. Feigin, H. Greenspan, and N. Sochen, "Can Born approximate the unborn? A new validity criterion for the Born approximation in microscopic imaging," IEEE 11th International Conference on Computer Vision, Vol. 14, No. 21, 1-8, 2007.

32. Trattner, S., M. Feigin, H. Greenspan, and N. Sochen, "The Born approximation for round and cubical objects in dic microscopy imaging," Proceeding of the Microscopic Image Analysis with Applications in Biology (MIAAB) Workshop, Piscataway, 2007.

33. Wen, Y., "Improved recursive algorithm for light scattering by multilayered sphere," Appl. Opt., Vol. 42, No. 9, 1710-1720, 2003.

34. Wu, Z., L. Guo, K. Ren, G. Gouesbet, and G. Grehan, "Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres," Appl. Opt., Vol. 36, No. 21, 5188-5198, 1997.

35. Liu, Z. H., E. K. Chua, and K. Y. See, "Accurate and efficient evaluation of method of moments matrix based on a generalized analytical approach," Progress In Electromagnetics Research, Vol. 94, 367-382, 2009.