Vol. 105

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Modelling of Reconfigurable Terahertz Integrated Architecture (Retina) SIW Structures

By Yun Zhou and Stepan Lucyszyn
Progress In Electromagnetics Research, Vol. 105, 71-92, 2010


This paper discusses for the first time the combined optoelectronic-electromagnetic modelling of a new technology that represents a paradigm shift in the way millimetre-wave and terahertz electronics can be implemented using the REconfigurable Terahertz INtegrated Architecture (RETINA) concept. Instead of having traditional metal-pipe rectangular waveguide structures with metal sidewalls, RETINA structures have photo-induced virtual sidewalls within a high resistivity silicon substrate. This new class of substrate integrated waveguide (SIW) technology allows individual components to be made tuneable and subsystems to be reconfigurable, by changing light source patterns. Detailed optoelectronic modelling strategies for the generation of virtual sidewalls and their electromagnetic interactions are presented in detail for the first time. It is found with double-sided illuminated RETINA structures that an insertion loss of 1.3 dB/ λg at 300 GHz is predicted for the dominant TE10 mode and for a cavity resonator a Q-factor of 4 at 173 GHz is predicted for the TE101 mode. While predicted losses are currently greater than other non-tuneable/reconfigurable SIW technologies, there is a wide range of techniques that can improve their performance, while still allowing completely arbitrary topologies to be defined in the x-z plane. For this reason, it is believed that this technology could have a profound impact on the future of millimetre-wave and terahertz electronics. As a result, this paper could be of interest to research groups that have the specialised experimental resources to implement practical demonstrator exemplars.


Yun Zhou and Stepan Lucyszyn, "Modelling of Reconfigurable Terahertz Integrated Architecture (Retina) SIW Structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.


    1. Lucyszyn, S. and I. D. Robertson, "Analog reflection topology building blocks for adaptive microwave signal processing applications," IEEE Trans. Micro. Theory Tech., Vol. 43, No. 3, 601-611, Mar. 1995.

    2. Lucyszyn, S., Advanced RF MEMS, Cambridge University Press, Cambridge, UK, ISBN-13: 9780521897716, Aug. 2010.

    3. McGrath, W. R., C. Walker, M. Yap, and Y.-C. Tai, "Silicon micromachined waveguides for millimetre-wave and submillimeterwave frequencies ," IEEE Microw. Guid. Wave Lett., Vol. 3, No. 3, 61-63, 1993.

    4. Lucyszyn, S., Q. H. Wang, and I. D. Robertson, "0.1 THz rectangular waveguide on GaAs semi-insulating substrate," IEE Elect. Lett., Vol. 31, No. 9, 721-722, Apr. 1995.

    5. Lucyszyn, S., D. Budimir, Q. H. Wang, and I. D. Robertson, "Design of compact monolithic dielectric-filled metal-pipe rectangular waveguides for millimetre-wave applications," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 143, No. 5, 451-453, Oct. 1996.

    6. Lucyszyn, S., "The future of on-chip terahertz metal-pipe rectangular waveguides implemented using micromachining and multilayer technologies," IEE Colloquium Digest on Terahertz Technology and Its Applications, Vol. 1997, No. 151, 10/1-10/10, London, Apr. 1997.

    7. Lucyszyn, S., S. R. P. Silva, I. D. Robertson, R. J. Collier, A. K. Jastrzebski, I. G. Thayne, and S. P. Beaumont, "Terahertz multi-chip module (T-MCM) technology for the 21st Century?," IEE Colloquium Digest on Multi-chip Modules and RFICs, 6/1-6/8, London, May 1998.

    8. Aftanasar, M. S., P. R. Young, I. D. Robertson, J. Minalgiene, and S. Lucyszyn, "Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides," IEE Elect. Lett., Vol. 37, No. 18, 1122-1123, Aug. 2001.

    9. Stephens, D., P. R. Young, and I. D. Robertson, "Design and characterization of 180 GHz filters in photoimageable thick-film technology," IEEE MTT-S IMS, Vol. 1, 451-454, 2005.

    10. Bowen, J. W., S. Hadjiloucas, B. M. Towlson, L. S. Karatzas, S. T. G. Wootton, N. J. Cronin, S. R. Davies, C. E. McIntosh, J. M. Chamberlain, R. E. Miles, and R. D. Pollard, "Micromachined waveguide antennas for 1.6 THz," IEE Elect. Lett., Vol. 42, No. 15, 842-843, Jul. 2006.

    11. Lucyszyn, S., Substrate integrated metal-pipe rectangular waveguides, IEEE International Microwave Symposium (IMS2010) Workshop Proceedings, WSI: Substrate Integrated Circuits, USA, May 2010.

    12. Lucyszyn, S. and Y. Zhou, Reconfigurable terahertz integrated architecture (RETINA), 33rd International Conference on Infrared, Millimetre, and Terahertz Waves (IRMMW-THz 2008), Pasadena, USA, Sep. 2008.

    13. Ambroziak, A., Semiconductor Photoelectric Devices, Iliffe Books, London, 1968.

    14. Joshi, N. V., "Photoconductivity: Art, Science and Technology," Marcel Dekker, New York, 1990.

    15. Johnson, A. M. and D. H. Auston, "Microwave switching by picosecond photoconductivity," IEEE J. Quant. Electronics, Vol. 11, No. 6, 283-287, Jun. 1975.

    16. Lee, C. H., "Picosecond optoelectronic switching in GaAs," Appl. Phy. Lett., Vol. 30, No. 2, 84-86, Jan. 1977.

    17. Seeds, A. J. and A. A. De Salles, "Optical control of microwave semiconductor devices," IEEE Trans. Micro. Theory Tech., Vol. 38, No. 5, 577-585, May 1990.

    18. Lucyszyn, S. and I. D. Robertson, "Optically-induced measurement anomalies with voltage-tunable analog control MMICs," IEEE Trans. Micro. Theory Tech., Vol. 46, No. 8, 1105-1114, Aug. 1998.

    19. Platte, W., "LED-induced distributed Bragg reflection microwave ¯lter with ¯bre-optically controlled change of center frequency via photoconductivity grating," IEEE Trans. Micro. Theory Tech., Vol. 39, No. 2, 359-363, Feb. 1991.

    20. Platte, W., "An optimization of semiconductor film thickness in light-controlled microstrip devices," Solid-state Electron., Vol. 20, 57-60, 1977.

    21. Platte, W., Lichtempfindliche Halbleiterschichten in Microstrip Schaltungen, Dissertation, 78, University Erlangen-Nurnberg, 1975.

    22. Flewitt, A. J. and W. I. Milne, "a-Si:H TFT thin film and substrate materials," Thin Film Transistors: Materials and Processes, Amorphous Silicon Thin Film Transistors, Poly-crystalline Silicon Thin Transist , Chapter 2, Y. Kuo (ed.), 32, Kluwer Academic Pub., Feb. 2004.

    23. Lee, C. H., P. S. Mak, and A. P. DeFonzo, "Optical control of millilmeter-wave propagation in dielectric waveguides," IEEE J. Quant. Electronics, Vol. 16, No. 3, 277-288, Mar. 1980.

    24. Davenas, J., S. Besbes, and H. Ben Ouada, "NIR spectrophotometry characterization of ITO electronic property changes at the interface with a PPV derivative," Synethetic Metals, No. 138, 295-298, 2003.

    25. Biyikli, N., I. Kimukin, B. Butun, O. Aytur, and E. Ozbay, "ITO-Schttky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Quant. Electronics, Vol. 10, No. 4, 759-765, Aug. 2004.

    26. Szczyrbowski, J., A. Dietrich, and H. Hoffmann, "Optical and electrical properties of r.f. sputtered indium-tin oxide films," Phys. Stat. Sol. (a), Vol. 78, 243-252, 1983.

    27. Afsar, M. N. and K. J. Button, "Precise millimetre-wave measurements of complex refractive index, complex dielectric permittivity and loss tangent of GaAs, Si, SiO2, Al2O3, BeO, Macor and Glass," IEEE Trans. Micro. Theory Tech., Vol. 31, No. 2, 217-223, Feb. 1983.

    28. SILVACO, Atlas user's manual, device simulation software, 2002.

    29. Dressel, M. and G. Gruner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press, 2002.

    30. Zhou, Y. and S. Lucyszyn, "HFSSTM modelling anomalies with THz metal-pipe rectangular waveguide structures at room temperature," PIERS Online, Vol. 5, No. 3, 201-211, 2009.

    31. Patrovsky, A., M. Daigle, and K. Wu, "Coupling mechanism in hybrid SIW-CPW forward couplers for millimeter wave substrate integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2594-2602, Nov. 2008.

    32. Henry, M., C. E. Free, B. S. Izqueirdo, J. Batchelor, and P. Young, "Millimeter wave substrate integrated waveguide antennas: Design and fabrication analysis," IEEE Trans. Adv. Packag., Vol. 32, No. 1, 93-100, Feb. 2009.

    33. Samanta, K. K., D. Stephens, and I. D. Robertson, "Design and performance of a 60-GHz multi-ship module receiver employing substrate integrated waveguides ," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 961-967, Oct. 2007.

    34. Yousef, H., S. Cheng, and H. Kratz, "Substrate integrated waveguides (SIWs) in a flexible printed circuit board for millimeter-wave applications," J. Microelectromech. Syst., Vol. 18, No. 1, 154-162, Feb. 2009.

    35. Kirby, P. L., D. Pukala, H. Manohara, I. Mehdi, and J. Papapolymerou, "Characterization of micromachined silicon rectangular waveguide at 400 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 366-368, Jun. 2006.

    36. http://www.falstad.com/embox/.