In this paper, one of the subspace signal processing methods, namely time reversal multiple signal classification (TR-MUSIC), is firstly employed for electromagnetic subsurface detection where the multilayered dyadic Green's function is used. Therewith, one obtains the improved location and superresolution imaging for underground detecting application. The imaging pseudo-spectrum is accordingly defined for both the echo-mode and transmit-mode TR-MUSIC methods, by analyzing the obtained multistatic response matrix. Based on the theoretical formula, we carry out the numerical simulation using the half-space dyadic Green's function in noisy scenario. The results show that the MUSIC imaging algorithm achieves the enhanced resolution and the transmit-mode method gives more robust output when performance comparison of the four methods is made, therefore indicate the TR-MUSIC could be a good candidate for subsurface detection.
2. Prada, C., J. L. Thomas, and M. Fink, "The iterative time reversal process: Analysis of the convergence," J. Acoust. Soc. Am., Vol. 97, 62-71, 1995.
doi:10.1121/1.412285
3. Kuperman, W. A., W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, "Phase conjugation in the ocean: Experimental demonstration of an acoustic time reversal mirror," J. Acoust. Soc. Am., Vol. 103, 25-40, 1998.
doi:10.1121/1.423233
4. Zheng, W., Z. Zhao, and Z.-P. Nie, "Application of TRM in the UWB through wall radar," Progress In Electromagnetics Research, Vol. 87, 279-296, 2008.
doi:10.2528/PIER08101202
5. Zheng, W., Z. Zhao, Z.-P. Nie, and Q. H. Liu, "Evaluation of TRM in the complex through wall environment," Progress In Electromagnetics Research, Vol. 90, 235-254, 2009.
doi:10.2528/PIER09011003
6. Prada, C., S. Manneville, D. Spoliansky, and M. Fink, "Decomposition ofthe time reversal operator: Detection and selective focusing on two scatterers," J. Acoust. Soc. Am., Vol. 99, 2067-2076, 1996.
doi:10.1121/1.415393
7. Folegot, T., C. Prada, and M. Fink, "Resolution enhancement and separation of reverberation from target echo with the time reversal operator decomposition," J. Acoust. Soc. Am., Vol. 113, 3155-5160, 2003.
doi:10.1121/1.1571541
8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
doi:10.1163/156939399X01113
9. Chambers, D. and A. Gautesen, "Time reversal for a single spherical scatter," J. Acoust. Soc. Am., Vol. 109, 2616-2624, 2001.
doi:10.1121/1.1368404
10. Mordant, N., C. Prada, and M. Fink, "Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method," J. Acoust. Soc. Am., Vol. 105, 2634-2642, 1999.
doi:10.1121/1.426879
11. Gaumond, C. F., D. M. Fromm, J. F. Lingevitch, R. Menis, G. F. Edelmann, D. C. Calvo, and E. Kim, "Demonstration at sea of the decomposition-of-the-time-reversal-operator technique," J. Acoust. Soc. Am., Vol. 119, 976-990, 2006.
doi:10.1121/1.2150152
12. Rao, T. and X. Chen, "Analysis of the time-reversal operator fora single cylinder under two-dimensional settings," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2153-2165, 2006.
doi:10.1163/156939306779322503
13. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1219-1230, 2007.
14. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Trans. Antennas & Propag., Vol. 53, 1600-1610, 2005.
doi:10.1109/TAP.2005.846723
15. Devaney, A. J., E. A. Marengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am., Vol. 115, 3129-3138, 2005.
doi:10.1121/1.2042987
16. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets ," J. Acoust. Soc. Am., Vol. 115, 3042-3047, 2004.
doi:10.1121/1.1738451
17. Ammari, H., E. Iakovleva, D. Lesselier, and G. Perrusson, "MUSIC type electromagnetic imaging of a collection of small three-dimensional inclusions," SIAM J. Sci. Comput., Vol. 29, 674-709, 2007.
doi:10.1137/050640655
18. Zhong, Y. and X. Chen, "MUSIC imaging and electromagnetic inverse scattering of multiply scattering small anisotropic spheres," IEEE Trans. Antennas & Propag., Vol. 55, 3542-3549, 2007.
doi:10.1109/TAP.2007.910488
19. Chen, X. and K. Agarwal, "MUSIC algorithm for two-dimensional inverse problems with special characteristics of cylinders," IEEE Trans. Antennas & Propag., Vol. 56, 1808-1812, 2008.
doi:10.1109/TAP.2008.923333
20. Odendaal, J. W., E. Barnard, and C. W. I. Pistorius, "Two dimensional superresolution radar imaging using the MUSIC algorithm," IEEE Trans. Antennas & Propag., Vol. 42, No. 10, 1386-1391, 1994.
doi:10.1109/8.320744
21. Yoon, Y. S. and M. G. Amin, "High-resolution trough-the-wall radar imaging using beamspace MUSIC," IEEE Trans. Antennas & Propag., Vol. 56, 1763-1774, 2008.
doi:10.1109/TAP.2008.923336
22. Chew, W. C., Waves and Fields in Inhomogeneous Media, 2nd Ed., IEEE Press, New-York, 1995.
23. Xiao, S.-Q., J. Chen, X.-F. Liu, and B.-Z.Wang, "Spatial focusing characteristics of time reversal UWB pulse transmission with different antenna arrays," Progress In Electromagnetics Research B, Vol. 2, 223-232, 2008.
doi:10.2528/PIERB07112203
24. Yu, G. and T.-J. Cui, "Imaging and localization properties of LHM superlens excited by 3D horizontal electric dipoles," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 35-46, 2007.
doi:10.1163/156939307779391795