Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-02-11

Design of an E-Shaped MIMO Antenna Using IWO Algorithm for Wireless Application at 5.8 GHz

By Ali Reza Mallahzadeh, Sabikeh Es'haghi, and Amir Alipour
Progress In Electromagnetics Research, Vol. 90, 187-203, 2009
doi:10.2528/PIER08122704

Abstract

A novel compact four element multiple input multiple output (MIMO) antenna is proposed. The antenna is composed of four E-shaped patch elements and operates at 5.8 GHz. The E-shaped patch antenna, operate at this frequency is designed using the Invasive Weed optimization algorithm. This algorithm is then applied to design the two and the four element MIMO antenna for high degree of isolation. In order to measure the array performance under MIMO signaling conditions a multi-port metric is used to characterize the compact array rather than the scattering matrix characterization. The designed antennas have low profile, easy fabrication, low cost and good isolation. The simulation and measurement result of reflection coefficient, mutual coupling and radiation pattern is presented.

Citation


Ali Reza Mallahzadeh, Sabikeh Es'haghi, and Amir Alipour, "Design of an E-Shaped MIMO Antenna Using IWO Algorithm for Wireless Application at 5.8 GHz ," Progress In Electromagnetics Research, Vol. 90, 187-203, 2009.
doi:10.2528/PIER08122704
http://jpier.org/PIER/pier.php?paper=08122704

References


    1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wirel. Pers. Commun., Vol. 6, No. 3, 311-335, 1998.
    doi:10.1023/A:1008889222784

    2. Kurosaki, S., Y. Asai, T. Sugiyama, and M. Umehira, "SDM-COFDM scheme using feed forward inter-channel interference canceller for broadband mobile communications," IEEE 55th Vehicular Technology Conference, VTC2002-Spring, Vol. 3, 1079-1083, May 2002.
    doi:10.1109/VTC.2002.1002779

    3. Abouda, A. A. and S. G. HÄaggman, "Effect of mutual coupling capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, PIER 65, 27-40, 2006.

    4. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., Wiley, New York, 1998.

    5. Gao, Y., C. C. Chiau, X. Chen, and C. G. Parini, "Modified PIFA and its array for MIMO terminals," Inst. Elect. Eng. Proc. Microw. Antennas Propag., Vol. 152, No. 4, 253-257, Aug. 2005.

    6. Gao, Y., , C. C. Chiau, X. Chen, and C. G. Parini, "A compact dual-element PIFA array for MIMO terminals," Loughborough Antennas Propag. Conf., Apr. 2005.

    7. Gao, Y., X. Chen, Z. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Transactions on Antennas and Propogation, Vol. 55, No. 12, Dec. 2007.

    8. Manteghi, M. and Y. Rahmat-Samii, "Novel compact tri-band two-element and four-element MIMO antenna designs," Proc. IEEE Int. Symp. Antennas Propag., 4443-4446, Jul. 2006.

    9. Browne, D. W., M. Manteghi, M. P. Fitz, and Y. Rahmat-Samii, "Experiments with compact antenna arrays for MIMO radio communications," IEEE Transactions on Antennas and Propogation, Vol. 54, No. 11, Dec. 2006.

    10. Honma, N., K. Nishimori, Y. Takatori, A. Ohta, and K. Tsunekawa, "Proposal of compact three-port MIMO antenna employing modified inverted F antenna and notch antennas," Proc. IEEE Int. Symp. Antennas Propag., 2613-2616, Jul. 2006.

    11. Chae, S. H., S. K. Oh, and S. O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propogation Letters, Vol. 6, 122-125, 2007.
    doi:10.1109/LAWP.2007.893109

    12. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecological Informatics, Vol. 1, 355-366, 2006.
    doi:10.1016/j.ecoinf.2006.07.003

    13. Rahmat-Samii, Y. and E. M. hielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, 1999.

    14. Lu, Y. Q. and J. Y. Li, "Optimization of broadband top-load antenna using micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 793-801, 2006.
    doi:10.1163/156939306776143370

    15. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using realcoded genetic algorithm," Progress In Electromagnetics Research, PIER 75, 319-328, 2007.

    16. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, PIER 68, 247-259, 2007.

    17. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, PIER 52, 225-254, 2005.

    18. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propogation, Vol. 52, 397-407, 2004.
    doi:10.1109/TAP.2004.823969

    19. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
    doi:10.1163/156939306779322747

    20. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesizes of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
    doi:10.1163/156939306779292273

    21. Boeringer, D. and D.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Transactions on Antennas and Propogation, Vol. 52, 771-779, 2004.
    doi:10.1109/TAP.2004.825102

    22. Karaboga, N., K. Guney, and A. Akdagli, "Null steering of linear antenna arrays with use of modified touring ant-colony optimization algorithm," Wiley Periodicals, 375-383, 2002.

    23. Coleman, C., E. Rothwell, and J. Ross, "Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas," IEEE Transactions on Antennas and Propogation, Vol. 52, 1007-1014, Apr. 2004.
    doi:10.1109/TAP.2004.825658

    24. Mallahzadeh, A. R., H. Oraizi, and Z. Davoodi-Rad, "Application of the invasive weed optimization technique for antenna configurations," Progress In Electromagnetics Research, PIER 52, 225-254, 2008.

    25. Manteghi, M. and Y. Rahmat-Samii, "Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations," IEEE Transactions on Antennas and Propogation, Vol. 53, Jan. 466-474, 2005.

    26. Jesen, M. A. and Y. Rahmat-Samii, "FDTD analysis of PIFA diversity antennas on a hand-held transceiver unit," IEEE Antennas Propagation, Symposium. Dig., 81, June 1993.

    27. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," IEE Electronics Letters, Vol. 39, 705-707, May 2003.
    doi:10.1049/el:20030495

    28. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," IEE Electronics Letters, Vol. 39, 705-707, May 2003.
    doi:10.1049/el:20030495