Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-02-10

Research Progress in Reversed Cherenkov Radiation in Double-Negative Metamaterials

By Zhaoyun Duan, Bae-Ian Wu, Sheng Xi, Hongsheng Chen, and Min Chen
Progress In Electromagnetics Research, Vol. 90, 75-87, 2009
doi:10.2528/PIER08121604

Abstract

We review the research progress in reversed Cherenkov radiation in double- negative metamaterials (DNMs) starting from the first experimental verification of the DNMs reported in 2001, including theories, numerical computation and simulation and experiments. We also discuss the potential applications to particle detectors and highpower microwave or millimeter-wave devices, including the oscillators and amplifiers, and the formidable challenges needed to be resolved before the benefits of using such artificial materials can be harvested.

Citation


Zhaoyun Duan, Bae-Ian Wu, Sheng Xi, Hongsheng Chen, and Min Chen, "Research Progress in Reversed Cherenkov Radiation in Double-Negative Metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604
http://jpier.org/PIER/pier.php?paper=08121604

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry , J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    3. Pendry, J. B., A. J. Holden, D. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    5. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    6. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, PIER 51, 1-26, 2005.

    7. Engheta, N. and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Trans.Micr owave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
    doi:10.1109/TMTT.2005.845188

    8. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
    doi:10.1163/156939306779322620

    9. Chen , H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
    doi:10.1163/156939306779322585

    10. Engheta, N. and R. W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, Inc., New Jersey, 2006.

    11. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., New Jersey, 2006.

    12. Marques, R., F. Mart´ın, and M. Sorolla, Metamaterials with Negative Parameters, John Wiley & Sons, Inc., New Jersey , 2007.

    13. Sihvola, A. H., "Metamaterials and depolarization factors," Progress In Electromagnetics Research, PIER 51, 65-82, 2005.

    14. Li, Z. and J. Cui, "Sandwich-Structure waveguides for very highpower generation and transmission using left-handed materials," Progress In Electromagnetics Research, PIER 69, 101-116, 2007.

    15. Ding, W., L. Chen, and C.-H. Liang, "Characteristics of electromagnetic wave propagation in biaxial anisotropic lefthanded materials," Progress In Electromagnetics Research, PIER 70, 37-52, 2007.

    16. Henin, B. H, M. H. Al Sharkawy, and A. Z. Elsherbeni, "Scattering of obliquely incident plane wave by an array of parallel concentric metamaterial cylinders," Progress In Electromagnetics, PIER 77, 285-307, 2007.

    17. Melezhik, P. N., A. Y. Poyedinchuk, N. P. Yashina, G. Granet, and M. Ney, "Radiation from surface with periodic boundary of metamaterials excited by a current," Progress In Electromagnetics, PIER 65, 1-14, 2006.

    18. Duan, Z. Y., B.-I. Wu, J. A. Kong, F. M. Kong, and S. Xi, "Enhancement of radiation properties of a compact planar antenna using transformation media as substrates," Progress In Electromagnetics Research, PIER 83, 375-384, 2008.

    19. Cherenkov , P. A., "Visible emission of clean liquids by action of γ radiation," Dokl.A kad.Nauk SSSR, Vol. 2, 451-454, 1934.

    20. Frank, I. M. and I. E. Tamm, "Coherent visible radiation of fast electrons passing through matter," Dokl.A kad.Nauk SSSR, Vol. 14, 109-114, 1937.

    21. Ginzburg, V. L, "The quantum theory of light radiation of an electron uniformly moving in a medium," Journal of Physics (Moscow), Vol. 2, 441-452, Moscow, 1940.

    22. Lu, J., T. M. Grzegorczyk, Y. Zhang, J. Pacheco Jr., B.-I. Wu, J. A. Kong, and M. Chen, "Cerenkov radiation in materials with negative permittivity and permeability," Optics Express , Vol. 11, No. 7, 723-734, 2003.

    23. Averkov, Y. O. and V. M. Makovenko, "Cherenkov radiation by an electron bunch that moves in a vacuum above a left-handed material," Physical Review B, Vol. 72, 205110, 2005.
    doi:10.1103/PhysRevB.72.205110

    24. Lu, J. and Ph.D. Thesis, Department of Physics, Massachusetts Institute of Technology, 2006.

    25. Duan, Z. Y., Y. B. Gong, Y. Y. Wei, W. X. Wang, B.-I. Wu, J. A. Kong, and M. Chen, "Theoretical investigation into Cherenkov radiation in an anisotropic double-negative medium," 33rd International Conference on Infrared Millimeter, and Terahertz Waves , Sep. 15-19, 2008.

    26. Duan, Z. Y., B.-I. Wu, J. Lu, J. A. Kong, and M. Chen, "Reversed Cherenkov radiation in a waveguide filled with anisotropic doublenegative metamaterials," Journal of Applied Physics, Vol. 104, 063303, 2008.
    doi:10.1063/1.2980336

    27. Duan, Z. Y., B.-I. Wu, J. Lu, J. A. Kong, and M. Chen, "Cherenkov radiation in anisotropic double-negative metamaterials," Optics Express, Vol. 16, No. 22, 18479-18484, 2008.
    doi:10.1364/OE.16.018479

    29. Belyantsev, A. M. and A. B. Kozyrev, "Generation of RF oscillations in the interaction of an electromagnetic shock with a synchronous backward wave," Technical Physics, Vol. 45, No. 6, 747-752, 2000.
    doi:10.1134/1.1259714

    30. Luo, C., M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Cerenkov radiation in photonic crystals," Science, Vol. 299, 368-371, 2003.
    doi:10.1126/science.1079549

    31. Zhang, Y., Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, "Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguide," Physical Review Letters, Vol. 100, 163904, 2008.
    doi:10.1103/PhysRevLett.100.163904

    32. Wu, B.-I., J. Lu, J. A. Kong, and M. Chen, "Left-handed metamaterial design for Cerenkov radiation," Journal of Applied Physics, Vol. 102, 114907, 2007.
    doi:10.1063/1.2818066

    33. Antipov, S., , L. Spentzouris, W. Liu, W. Gai, and J. G. Power, "Double-negative metamaterial research for accelerator applications," Nuclear Instruments and Methods in Physics Research A, Vol. 579, 915-923, 2007.
    doi:10.1016/j.nima.2007.04.158

    34. Antipov, S., L. Spentzouris, W. Liu, W. Gai, and J. G. Power, "Wakefield generation in metamaterial-loaded waveguide," Journal of Applied Physics, Vol. 102, 034906, 2007.
    doi:10.1063/1.2767640

    35. Shchegolkov, D. Y., A. K. Azad, J. F. O’Hara, and E. I. Smirnove, "A proposed measurement of the reverse Cherenkov radiation effect in a metamaterial-loaded circular waveguide," 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, USA, Sep. 15-19, 2008.

    36. Gribic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," Journal of Applied Physics, Vol. 92, No. 10, 5930-5935, 2002.
    doi:10.1063/1.1513194

    37. Xi, S., et al., "Experimental verification of reversed Cerenkov radiation in a left-handed material,", in preparation, 2009.

    38. Antipov, S., L. Spentzours, W. Gai, M. Conde, F. Franchini, R. Konecny, W. Liu, J. G. Power, Z. Yusof, and C. Jing, "Observation of wakefield generation in left-handed band of metamaterial-loaded waveguide," Journal of Applied Physics, Vol. 104, 014901, 2008.
    doi:10.1063/1.2948929

    39. Antipov, S. and W. Gai, Private Communications.

    40. Li, Z. and J. Cui, "Novel waveguide directional couplers using left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1053-1062, 2007.

    41. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, 2004.
    doi:10.1126/science.1094025

    42. Grigorenko, A. N. , A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature, Vol. 438, 335-338, 2005.
    doi:10.1038/nature04242

    43. Soukoulis, C. M., S. Linden, and M.Wegener, "Negative refractive index at optical wavelengths," Science, Vol. 315, No. 5808, 47-49, 2007.
    doi:10.1126/science.1136481

    44. Gilmour, A. S. Jr., Principles of Traveling Wave Tubes, Artech House, Norwood, MA, 1994.

    45. Anonymous reviewer, Private communications.

    46. Caloz, C., A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," New journal of physics, Vol. 7, No. 167, 1-15, 2005.

    47. Cabuz, A. I., D. Felbacq, and D. Cassagne, "Homogenization of negative-index composite metamaterials: A two-step approach," Physical Review Letters, Vol. 98, 037403, 2007.
    doi:10.1103/PhysRevLett.98.037403

    48. Semichaevsky, A. and A. Akyurtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, PIER 71, 129-147, 2007.

    49. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging," Journal of the Optical Society of America B, Vol. 23, No. 3, 391-403, 2006.
    doi:10.1364/JOSAB.23.000391

    50. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, 2007.
    doi:10.1109/TMTT.2007.909611

    51. Popa, B.-I. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Physical Review Letters, Vol. 100, 207401, 2008.
    doi:10.1103/PhysRevLett.100.207401

    52. Zhou, J., T. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express, Vol. 16, No. 5, 11147-11152, 2008.
    doi:10.1364/OE.16.011147

    53. Pendry , J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    54. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters, Vol. 31, No. 12, 1800-1802, 2006.
    doi:10.1364/OL.31.001800

    55. Cummer, S. A., B.-I. Popa, and T. H. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
    doi:10.1109/TAP.2007.912959

    56. Liu, Y., G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Physical Review Letters, Vol. 99, 153901, 2007.
    doi:10.1103/PhysRevLett.99.153901

    57. Shadrivov, I. V., A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Tunable transmission and harmonic generation in nonlinear metamaterials," Applied Physics Letters, Vol. 93, 161903, 2008.
    doi:10.1063/1.2999634

    58. Chen, L., W. Ding, X.-J. Dang, and C.-H. Liang, "Counterpropagating energy-flows in nonlinear left-handed metamaterials," Progress In Electromagnetics Research, PIER 70, 257-267, 2007.

    59. Smith, D. R., S. Shultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104-1-5, 2002.
    doi:10.1103/PhysRevB.65.195104

    60. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterial," Physical Review E, Vol. 70, 016608, 2004.
    doi:10.1103/PhysRevE.70.016608

    61. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasistatic Lorentz theory," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, Part 1, 2550-2557, 2003.
    doi:10.1109/TAP.2003.817565

    62. Veselago, V. G. and E. E. Narimanov, "The left hand of brightness: Past, present and future of negative index materials," Nature Materials, Vol. 5, 759-762, 2006.
    doi:10.1038/nmat1746