Vol. 87
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-30
Properties of Approximate Bessel Beams at Millimeter Wavelengths Generated by Fractal Conical Lens
By
Progress In Electromagnetics Research, Vol. 87, 105-115, 2008
Abstract
An axicon, which images a point source into a line along the optic axis, is used widely to generate an approximation to a Bessel beam. More recently many novel axicons, such as Fresnel axicons, Fractal axicons and fractal conical lenses (FCLs), have been proposed. Understanding the properties of Bessel beams generated by these axicons is very helpful to research their applications. However, in optical region, all of them are calculated approximately by the scalar theory. To accurately analyze FCLs when illuminated by a plane wave at millimeter wavelengths, the rigorous electromagnetic analysis method, which combines a two-dimension finite-difference time-domain (2-D FDTD) method and Stratton-Chu formulas, is adopted in our paper. By using this method, the properties of approximate Bessel beams generated by FCLs are analyzed and the conclusions are given.
Citation
Yan-Zhong Yu, and Wen-Bin Dou, "Properties of Approximate Bessel Beams at Millimeter Wavelengths Generated by Fractal Conical Lens," Progress In Electromagnetics Research, Vol. 87, 105-115, 2008.
doi:10.2528/PIER08100606
References

1. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, No. 4, 651-654, 1987.
doi:10.1364/JOSAA.4.000651

2. Durnin, J., J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, No. 15, 1499-1501, 1987.
doi:10.1103/PhysRevLett.58.1499

3. Li, D., K. Imasaki, S. Miyamoto, S. Amano, and T. Mochizuki, "Conceptual design of Bessel beam cavity for free-electron laser," Int. J. Infrared Millim. Waves, Vol. 27, No. 4, 165-171, 2006.

4. Monk, S., J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, "The generation of Bessel beams at millimetre-wave frequencies by use of an axicon," Opt. Commun., Vol. 170, 213-215, 1999.
doi:10.1016/S0030-4018(99)00463-0

5. Mahon, R. J., W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, "Novel techniques for millimeter wave imaging systems operating at 100 GHz," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5789, 93-100, 2005.

6. Garces-Chavez, V., D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature, Vol. 419, No. 6903, 145-147, 2002.
doi:10.1038/nature01007

7. Salo, J., J. Meltaus, E. Noponen, et al. "Millimeter-wave Bessel beams using computer holograms," Electron. Lett., Vol. 37, No. 13, 834-835, 2001.
doi:10.1049/el:20010551

8. Meltaus, J., J. Salo, E. Noponen, et al. "Millimeter-wave beam shaping using holograms," IEEE Trans. Microwave Theor. Tech., Vol. 51, No. 4, 1274-1279, 2003.
doi:10.1109/TMTT.2003.809679

9. Yu, Y. Z. and W. B. Dou, "Generation of Bessel beams at mm- and sub mm-wavelengths by binary optical elements," Int. J. Infrared Millim. Waves, Vol. 29, No. 7, 693-703, 2008.
doi:10.1007/s10762-008-9365-6

10. Pu, J. X. and S. J. Nemoto, "Design and analysis of diffractive axicons for Gaussian beam illumination," Chin. J. Lasers B, Vol. 10, No. 3, 228-232, 2001.

11. Jaroszewicz, Z., A. Burvall, and A. T. Friberg, "Axicon-the most important optical element," Opt. Photonics News (USA), Vol. 16, No. 4, 35-39, 2005.

12. Golub, I., "Fresnel axicon," Opt. Lett., Vol. 31, No. 12, 1890-1892, 2006.
doi:10.1364/OL.31.001890

13. Monsoriu, J. A., C. J. Zapata-Rodriguez, and W. D. Furlan, "Fractal axicons," Opt. Commun., Vol. 263, No. 1, 1-5, 2006.
doi:10.1016/j.optcom.2006.01.020

14. Monsoriu, J. A., W. D. Furlan, P. Andres, and J. Lancis, "Fractal conical lenses," Opt. Express, Vol. 14, No. 20, 9077-9082, 2006.
doi:10.1364/OE.14.009077

15. Yin, H. P. and W. B. Dou, "Analysis of an extended hemispherical lens antenna at millimeter wavelengths," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 9, 1209-1222, 2002.
doi:10.1163/156939302X00723

16. An, G. and W. B. Dou, "Analysis of a sphere lens quasi-optical monopulse antenna/feed structure," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 83-93, 2005.
doi:10.1163/1569393052955044

17. Dou, W. B. and Z. L. Mei, "Electromagnetic analysis of symmetrical diffractive lens with small F-number and electrical large size," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1359-1374, 2005.
doi:10.1163/156939305775525855

18. Wang, Z. X. and W. B. Dou, "Design and analysis of several kinds of dielectric lens antennas," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1643-1653, 2006.
doi:10.1163/156939306779292327

19. Wang, Z. X. and W. B. Dou, "Design and analysis of thin diffractive/refractive lens antennas," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2239-2251, 2006.
doi:10.1163/156939306779322558

20. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, 1983.

21. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

22. Zhang, X., J. Fang, K. K. Mei, and Y. W. Liu, "Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method," IEEE Trans. Microwave Theor. Tech., Vol. 36, No. 2, 263-267, 1988.
doi:10.1109/22.3514

23. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theor. Tech., Vol. 38, No. 7, 849-857, 1990.
doi:10.1109/22.55775

24. Ji, F., E. K. N. Yung, R. S. Chen, et al. "FDTD analysis of Y-junction microstrip circulator with a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 11, 1631-1641, 2003.
doi:10.1163/156939303772681505

25. Golestani-Rad, L., J. Rashed-Mohassel, and M. M. Danaie, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

26. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
doi:10.2528/PIER06122801

27. Afrooz, K., A. Abdipour, A. Tavakoli, et al. "Time domain analysis of active transmission line using FDTD technique (application to microwave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

28. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and reflector effects on monopole antenna factor using FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1379-1392, 2007.
doi:10.1163/156939307783239410

29. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

30. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.