Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2006-12-17

Analysis of a Lossy Microring Using the Generalized Multipole Technique

By N. Talebi, Mahmoud Shahabadi, and Christian V. Hafner
Progress In Electromagnetics Research, Vol. 66, 287-299, 2006
doi:10.2528/PIER06112801

Abstract

In this work, the performance of a microring add-drop filter is investigated using the generalized multipole technique. The complete scattering parameters of the structure are computed using an efficient port solver based on the generalized multipole technique, which avoids spurious reflections at the terminations. The scattering parameters of a number of structures are calculated and compared with those obtained using the FDTD and coupled-mode theory methods. The generalized multipole method can advantageously take dielectric losses of the microring into account. Moreover, the total power loss including radiation and the dielectric losses is computed for a microring add-drop filter, for the first time.

Citation

 (See works that cites this article)
N. Talebi, Mahmoud Shahabadi, and Christian V. Hafner, "Analysis of a Lossy Microring Using the Generalized Multipole Technique," Progress In Electromagnetics Research, Vol. 66, 287-299, 2006.
doi:10.2528/PIER06112801
http://jpier.org/PIER/pier.php?paper=06112801

References


    1. Bozhevolnyi, S., V. Vokov, E. Devaux, J. Laluet, and T. Ebbesen, Nature Lett., Vol. 440, 508-511, 2006.
    doi:10.1038/nature04594

    2. Schwelb, O. and Elsevier, Opts. Comms., Vol. 265, 175-179, 2006.
    doi:10.1016/j.optcom.2006.02.055

    3. Madsen, C. and G. Lenz, IEEE Photonics Technol. Lett., Vol. 10, 994-996, 1998.
    doi:10.1109/68.681295

    4. Little, B., S. Chu, W. Pan, and Y. Kokubun, IEEE Photonics Technol. Lett., Vol. 12, 323-325, 2000.
    doi:10.1109/68.826928

    5. Krauss, T. and P. Laybourn, Proc. SPIE, Vol. 1583, 150, 1994.

    6. Little, B., S. Chu, H. Haus, J. Foresi, and J. Laine, J. Lightwave Technol., Vol. 15, 998-1005, 1997.
    doi:10.1109/50.588673

    7. Hagness, C., T. Rafizadeh, T. Ho, and A. Taflove, J. Lightwave Technol., Vol. 15, 2154-2165, 1997.
    doi:10.1109/50.641537

    8. Yuan, W. and E.-P. Li, Progress In Electromagnetics Research, Vol. 47, 193-212, 2004.
    doi:10.2528/PIER03121002

    9. Ziolkowski, R. W., Progress In Electromagnetics Research, Vol. 41, 159-183, 2003.
    doi:10.2528/PIER02010807

    10. Moreno, E., D. Erni, and C. Hafner, Phys. Rev. E, Vol. 66, 036618(10), 2002.
    doi:10.1103/PhysRevE.66.036618

    11. Moreno, E., D. Erni, and C. Hafner, Phys. Rev. B, Vol. 65, 155120(10), 2002.

    12. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech House, Boston, 1990.

    13. Moreno, E., E. Erni, C. Hafner, and R. Vahldieck, Opt. Soc. Am. A, Vol. 19, 101-111, 2002.