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Abstract—In this work, the performance of a microring add-drop
filter is investigated using the generalized multipole technique. The
complete scattering parameters of the structure are computed using
an efficient port solver based on the generalized multipole technique,
which avoids spurious reflections at the terminations. The scattering
parameters of a number of structures are calculated and compared with
those obtained using the FDTD and coupled-mode theory methods.
The generalized multipole method can advantageously take dielectric
losses of the microring into account. Moreover, the total power loss
including radiation and the dielectric losses is computed for a micro-
ring add-drop filter, for the first time.

1. INTRODUCTION

Optical ring resonators are used in many applications such as channel
dropping filters, dispersion compensators, optical switches, and lasers
[1–6]. These resonators are mostly characterized by parameters such as
free spectral range (FSR), quality factor (Q), insertion loss (IL), and
crosstalk (XT). A typical two-dimensional microring add-drop filter
is shown in Figure 1. Recently high-index-contrast ring resonators
attracted much attention, because they allow one to fabricate very
small ring resonators with low radiation loss. The realization of such
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Figure 1. A microring add/drop filter.

structures requires nanofabrication techniques for rings with radii as
small as 1µm [7].

So far these resonators have been investigated using the beam
propagation method (BPM), the finite deference time domain (FDTD)
method, and coupled mode theory (CMT). Among these methods,
FDTD is most frequently applied because of its flexibility in the
analysis of complex structures. However, its precision is limited
because it is based on a second order scheme, because absorbing
boundary conditions are required to truncate the surrounding space
and the waveguides [8, 9], and because of the staircase discretization of
the curvilinear structures. In addition to these factors, the excitation of
the structure with fields other than the modal fields of the connecting
waveguides can lead to difficulties regarding the size of the simulation
domain and also the simulation time. Finally, Fourier transform is
required for obtaining the frequency response.

The generalized multipole technique (GMT) is a frequency domain
method that is very flexible for isotropic and piecewise linear materials.
This method has been successfully applied to complicated structures
such as photonic-crystal components [10, 11]. In contrast to FDTD,
it only requires the discretization of the boundaries, which exhibits
therefore no problems with open space and provides exponential
convergence for the smooth geometry of the ring resonators. To
obtain the exact modal scattering parameters of the microring, we
benefit from a port solver based on the generalized multipole technique
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which has been already applied to the analysis of certain waveguide
discontinuities. This method avoids the spurious reflections which
naturally occur in other methods due to the impedance mismatch at
waveguide terminations. We also take the four-fold symmetry of the
microring add-drop filter into account, which results in better accuracy
and reduced computation time. The influence of the dielectric loss on
the transmittance behavior of the ring resonator add-drop filter, such
as IL and Q will also be discussed. Since GMT is a frequency domain
method, it can easily take the dielectric loss into account in any data
format such as experimental diagrams or Drude or Lorentz model. It
will be shown that dielectric losses can deteriorate the performance of
these resonators, and even suppress some of their whispering gallery
modes. We investigate the performance of the microring resonator, for
various dielectric loss factors between tan(δ) = 0.0001 and 0.001, and
compare the results with a lossless microring resonator.

Since GMT is very close to analytic solutions, it allows experienced
users to obtain highly accurate solutions with minimum computational
effort. Namely when the boundaries are sufficiently smooth,
exponential convergence is reached. Since inexperienced users may
create GMT models that are far from being optimal or even fail, GMT
is less user-friendly than well-known methods such as FD and FE.
Furthermore, it is important to note that exponential convergence
is useful for obtaining highly accurate results, whereas methods with
slower convergence are usually better suited for obtaining quick results
with low or moderate accuracy. As all boundary methods, GMT is
much very advantageous for 2D problems because its discretization
domain, i.e., the boundaries is only 1D. When extending it to 3D,
the discretization domain is squared and therefore, the numerical
effort drastically increases. Finally, GMT works with relatively small
but dense matrices that tend to be ill-conditioned. Therefore, it is
important to implement appropriate matrix solvers. However, the
2D problem considered in the following is well suited to GMT and
therefore, highly accurate results are obtained with relatively low
numerical effort.

2. ANALYSIS OF A MICRORING USING GMT

GMT can be applied to many computational electromagnetic problems,
from static to dynamic, and from scattering to waveguide problems
[12]. In dynamic problems, it is based on the expansion of the fields
in terms of appropriate basis functions which are solutions to the
Helmholtz equation, such as plane waves, multipolar functions, and
the modal fields of waveguides. To apply this method to a two-
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dimensional (2D) region comprised of multiple domains D1 to Dn with
constitutive parameters εn and µn, the field in each domain is expanded
in terms of analytical solutions of the 2D Helmholtz equations for the
corresponding domain. For a TMz incident field, the only nonzero
field components are Ez, Hx, and Hy. The total electric field can be
expressed as:

EDn
z (r) = EDn

z,i (r) + EDn
z,s (r) (1)

In which EDn
z (r) is the total electric field in domain Dn, EDn

z,i (r)
and EDn

z,s (r) denote the excitation and the scattered electric field in
domain Dn, at the observation point r. We can derive other field
components (Hx and Hy) in domain Dn, from EDn

z (r). The coordinate
system used here is depicted in Figure 2.

To model the add-drop filter of Figure 1, we use the four-fold
symmetry of the structure as shown in Figure 2, which allows us
to simulate one quarter of the structure only. We consider a single-

Figure 2. Analysis of a microring add/drop filter using the four-fold
symmetry of the structure.
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mode waveguide at all of the four waveguide ports. For computing the
scattering parameters, we need to define a reference plane (waveguide
port) at some distance from the microring. We subdivide each region
of Figure 2 into 3 subdomains as shown in the same figure. The field in
subdomain D1 is expanded in terms of the modal fields of two coupled
semi-infinite slab waveguides which are attached to the ports P1 and
P4. Since we use the symmetry of the structure, in D1 the fields are
expanded in terms of the incident and reflected even modes of the
coupled waveguides in the configurations depicted in Figures 2(a) and
2(c), and odd modes of the ones shown in Figures 2(b) and 2(d). In
domains D2 andD3, we expand the total fields using the multipolar
functions, so the electric field will be:

E
D2,3
z (r) =

P∑
p=1

Np∑
n=1

(An cosnϕp +Bn sinnϕp)H(2)
n (k2,3 |r − rp|) (2)

where the time dependence is assumed as exp(jωt), in which ω is the
angular frequency, ϕp represents the azimuth angle at which the field
point r is seen by the p-th multipole located at rp. P is the total
number of multipole clusters, and Np denotes the maximum order of
multipoles in each cluster. Here, k2,3 = ω

√
µ0ε0εr 2,3, where εr 2,3 is

the complex relative permittivity of the subdomains D2 and D3.
The unknown amplitudes of the reflected wave at D1, and the

coefficients An and Bn in (2) are calculated by applying the boundary
conditions on the reference plane and the interface of D2 and D3, using
the generalized point matching technique [12] and QR factorization
for the resulting overdetermined system of equations. To take perfect
electric conductor (PEC) and perfect magnetic conductor (PMC)
boundaries into account, we apply the mirror principle and set the
mirror multipoles as in Figure 3. The amplitudes (An and Bn) of
mirror multipoles have some simple relations with the original ones
— dependent on the order of multipoles (n). For every multipole to
satisfy the PEC boundary conditions, we have:

a) For a vertical PEC, the amplitudes of the mirror multipoles are
multiplied by (−1)n+1 for the cosine terms and by (−1)n for the
sine terms of (2), in which n denotes the order of the multipole.

b) For a horizontal PEC, the amplitudes of the mirror multipoles
are multiplied by (−1) for the cosine terms and by 1 for the sine
terms.

For the PMC boundary conditions, one has similar relations with
an additional factor (−1). It should be mentioned that the locations
of the multipoles are almost arbitrary, as long as they satisfy some
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simple constraints, described in [13]. A typical location for multipoles
is shown in Figure 3.

Figure 3. Location of the clusters of multipoles for expanding the
fields of domain D2 is indicated by +, and for the fields of domain
D3 is shown with ×, the mirror multipoles are located in the shaded
region, and their amplitudes are given by the described rules.

If we consider the microring structure as a 4-port circuit, then
due to its isotropy and symmetry, the scattering matrix should be as
follows:

[S] =



S11 S21 S31 S41

S21 S11 S41 S31

S31 S41 S11 S21

S41 S31 S21 S11


 (3)

Note that it is sufficient to calculate the four values S11, S21,
S31, and S41. because of the four-fold symmetry of the structure, the
scattering parameters can be calculated from the reflection coefficient
(ρi) obtained from the analysis of the structures shown in Figure 2,
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and can be written as:

S11 =
1
4
(ρ1 + ρ2 + ρ3 + ρ4)

S21 =
1
4
(−ρ1 − ρ2 + ρ3 + ρ4)

S31 =
1
4
(ρ1 − ρ2 − ρ3 + ρ4)

S41 =
1
4
(−ρ1 + ρ2 − ρ3 + ρ4) (4)

in which ρi is the reflection coefficient of the first modal field of the
slab waveguide in the i-th configuration shown in Figure 2.

3. NUMERICAL RESULTS

Using the method described above, we calculate the scattering
parameters of an add/drop filter, with W = 0.2µm, ri = 1.6µm,
ro = 1.8µm, g = 0.2µm, εr 2 = 1, and εr 3 = 9. The total number of
multipoles in the domains D2 and D3 was 1161, and the size of the
resulted overdetermined matrix was 3420×1161, because the number of
matching points in the generalized point matching technique was 3420.
The locations of multipoles are shown in Figure 3. For this number of
multipoles the largest relative mismatching error along the boundaries

Figure 4. Comparison of GMT (solid curve), CMT (plus signs, [6])
and FDTD (dots, [6]) for the normalized power coupled to the drop
port of a microring add/drop filter.
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is only 0.1%. To verify the results, we compare the normalized coupled
power to the drop port, i.e., |S41|2 with the ones computed in [6] using
FDTD and CMT methods. The results are shown in Figure 4. It can
be seen that the exact location of the resonance is slightly different for
these 3 methods. In the CMT method of [6], the radiation loss has not
been taken into account, and the amplitude of the coupled power at
the drop port at resonance is computed to be unity. However, exact
analysis of this structure using GMT shows a nonzero IL. It means that
there is a radiation loss due to the diffraction at the ring resonator. The
GMT results are more accurate than FDTD results, because of its low
error on the boundary (where usually much higher errors are observed
than elsewhere), its exponential convergence and the other advantages
mentioned above. Compared with CMT, the GMT results must be
more accurate because GMT takes the radiation losses into account.
In Figure 5, the computed value of FSR for the modes m = 18 and 19,
where m denotes the number of wavelengths along the perimeter of the
ring, is 56 nm. This corresponds to 9.0473 GHz which is comparable
to the rough estimation of the following equation which treats the ring
resonator as an average radius of r = 1.7µm:

FSR =
c

2πnr
= 9.355 GHz (5)

in which c is the velocity of light in free space and n is the refractive
index of the ring resonator.

The quality factor of the ring resonator is obtained as the ratio of
the centre frequency to the half power resonance width. Its values along
with the centre frequencies for the successive resonances of Figure 5
are listed in Table 1. It can be seen that by increasing the wavelength,
the quality factor decreases. This is because the quality factor varies
as a function of coupling coefficient (κ) according to:

Q ≈ 2π2r neff

λ0κ2
(6)

Table 1. Resonance data from Figure 5.

Resonance
modes (m)

Resonance
wavelength

(nm)

Half power
resonance

width (nm)

Quality
factor

18 1390.60 1.85 752.34
19 1334.56 1.26 1054.46
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Figure 5. Scattering parameters of |S21|2 (solid line) and |S41|2
(dotted line) for two successive resonance modes of 18th and 19th
for a microring resonator with W = g = 0.2µm, ri = 1.6µm and
ro = 1.8µm.

which is obtained from the CMT [6]. Where r = 0.5(ri + ro), neff is
the effective index number of the ring and λ0 is the wavelength in free
space. Since κ increases by increasing the wavelength as described in
[7], Q inversely changes with the wavelength.

The insertion loss (IL) is defined as the normalized output power
level at the drop port at the resonance wavelength. Its value for the
18th resonance mode (λ0 = 1390.6 nm) in Figure 5 is −0.296 dB. The
crosstalk (XL) is the difference between the powers coupled to ports
2 and 4 from port 1 in the vicinity of the resonance. Its value at
the same wavelength is 26.6 dB which is assumed as a good crosstalk
level. Figure 6 shows the computed electric field at t = 0 for the 18th
resonance mode.

In the following, we illustrate the effect of the dielectric loss
on the transmittance behavior of the ring resonator add-drop filter.
Neglecting the surface roughness of the rings, there are two loss
mechanisms that affect Q and IL of an ideal ring resonator, namely
radiation loss and material loss. For a lossless structure, the ratio of
the radiation loss to input power is given by the normalized power loss:

Pr

Pin
= 1 − |S11|2 − |S21|2 − |S31|2 − |S41|2 (7)

When the materials (dielectric substrate, the etched waveguides,
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Figure 6. Computed electric field at t = 0 and λ0 = 1.3906 using
GMT method.

Figure 7. Comparison between different loss factors for the computed
coupled power at the drop port: for tan(δ) = 0 (solid line), tan(δ) =
0.0001 (dotted line), tan(δ) = 0.0006 (dashed line), and tan(δ) = 0.001
(diamond-line).

and the ring) are lossy, the right term in (7) gives the total amount of
loss including radiation loss and dissipated power due to the dielectric
losses.

Figure 7 shows the normalized coupled power to the drop port for
lossless and lossy dielectrics of domain D2, obtained from (7). From



Progress In Electromagnetics Research, PIER 66, 2006 297

Figure 8. Normalized power loss (Equation (7)) for tan(δ) = 0 (solid
line), tan(δ) = 0.0001 (diamond-line), tan(δ) = 0.0006 (dashed line),
and tan(δ) = 0.001 (dotted line).

this, one can see how the dielectric loss factor (tan(δ)) affects the IL
of the structure. Q and IL for various dielectric loss factors are shown
in Table 2. In Figure 8, the normalized power losses for the mentioned
loss factors are shown. It can be seen that highest losses are obtained
at resonance wavelengths. That is because of the bending loss which is
much higher at resonances due to high coupling of fields in the ring at
those wavelengths. It is apparent from Table 2 that the IL for the 18th
resonance mode is higher than the one for the 19th resonance mode.
This is because of the higher coupling efficiency for the resonance mode
m = 18 due to higher resonance wavelength. Also for lossy dielectrics,
the IL deteriorates more rapidly by increasing the dielectric loss factor
for the 19th resonance mode in comparison with them = 18 case, which
leads also to a higher decrease in the quality factor of the resonance
mode m = 19.

The total amount of power loss changes nonlinearly at the
resonance wavelength. It is apparent from Figure 8 that the power
loss at the resonance wavelengths for tan(δ) = 0.001 is slightly higher
than the 50% of the incident power, and this is nearly the case for
both resonances, but for lower dielectric loss factors, the amount of
dissipated power is different for these resonances, and for tan(δ) = 0,
they are again nearly the same.
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Table 2. Quality factor (Q) and insertion loss (IL) for couplers with
lossy dielectrics.

Dielectric
loss

factor

Resonance
mode

number
(m)

Insertion
loss
(dB)

Quality
factor

19 −0.325 1054.46
0 18 −0.296 752.34

19 −1.158 942.82
0.0001 18 −0.908 707.97

19 −4.593 667.52
0.0006 18 −3.565 533.15

19 −6.704 529.33
0.001 18 −5.300 439.59

4. CONCLUSION

The scattering parameters of a ring coupler with lossy dielectric were
efficiently and accurately computed with the generalized multipole
technique after taking the four-fold symmetry of the structure into
account for reducing the computational effort. The results were
validated by comparisons with CMT and FDTD results — that are in
fact less accurate than our GMT results. It is important to note that
GMT allows us to take the dielectric losses as well as radiation losses
into account without any numerical problems. The Q and IL of the
microring resonator for different dielectric loss factors were computed
for two successive modes of the ring coupler, and we showed that IL
varies differently for these modes. The total normalized power loss
has been computed using the obtained scattering parameters and the
behavior of the total loss at resonance wavelengths have been shown
to change nonlinearly with the dielectric loss factor.
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