submit Submit login
Vol. 37
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Microwave Analytical Backscattering Models from Randomly Rough Anisotropic Sea Surface --- Comparison with Experimental Data in C and Ku Bands
By
Progress In Electromagnetics Research, Vol. 37, 31-78, 2002
Abstract
The small slope approximation (SSA) and the Kirchhoff approach (KA) are applied to the prediction of microwave sea surface backscatter for both Ku and C bands for various wind speeds and incident angles. Numerical results are obtained assuming a non-directional surface wavenumber spectrum and compared with azimuthally averaged C- and Ku-band radar backscattering data. The KA can be obtained rigorously for a perfectly-conducting surface, whereas for a dielectric surface, either the KA of order one (KA1) or the stationary phase (SP) method can be used. Numerical results are obtained assuming a non-directional surface wavenumber spectrum and compared with azimuthally C and Ku bands radar backscattering data for incidence angles of interest for remote sensing. Since the SSA and KA formulations are expressed in polar coordinates, the backscattering coefficient is expressed in terms of surface height autocorrelation and its derivatives of one- and second- orders computed from integrating the sea spectrum multiplied by Bessel functions of the first kind. This allows to have for KA and first-order SSA (SSA-1), a single numerical integration over the radial distance instead of four, when the cartesian coordinates is chosen. Moreover, the azimuthal harmonic magnitudes of the backscattering coefficient according to the wind direction can be performed separately. For an isotropic sea surface assumed to be perfectly conducting where the KA is valid, the deviation between SSA and KA models is smaller than the one computed from the SP model for HH polarization. For the VV polarization, the difference is greater, since the polarization term of SSA is given by the small perturbation method, whereas for the KA approach, it is equal to the Fresnel coefficient. For an anisotropic sea surface, the comparison of KA with SSA-1 leads to the same conclusion. The isotropic part and the second azimuthal harmonic of the backscattering coefficient are also compared with empirical backscattering models CMOD2-I3 and SASS-II valid in C and Ku bands, respectively.
Citation
Christophe Bourlier, and Gerard Berginc, "Microwave Analytical Backscattering Models from Randomly Rough Anisotropic Sea Surface --- Comparison with Experimental Data in C and Ku Bands," Progress In Electromagnetics Research, Vol. 37, 31-78, 2002.
doi:10.2528/PIER01100801
References

1. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Part I: Theory, Pergamon Press, London, 1963.

2. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Vol.II, Addison-Wesley, Reading, MA, 1982.

3. Olgilvy, J. A., Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger, Bristol, Philadelphia, and New York, 1991.

4. Fung, A. K., C. Zuffada, and C. Y. Hsieh, "Incoherent bistatic scattering from the sea surface at L-band," IEEE Trans.Ge os. Rem.Sens., Vol. 39, No. 5, 1006-1012, 2001.
doi:10.1109/36.921418

5. Rice, S. O., "Reflection of electromagnetic wave from slightly rough surfaces," Symposium on the Theory of Electromagnetic Wave, 351-378, 1950.

6. Thorsos, E. I. and S. L. Broschat, "The validity of the perturbation theory approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust.Soc. Am., Vol. 86, No. 1, 261-277, 1989.
doi:10.1121/1.398342

7. Chevalier, B. and G. Berginc, "Small slope approximation method: scattering of a vector wave from 2D dielectric and metallic surfaces with Gaussian and non-Gaussian statistics," SPIE Scattering and Surface Roughness, Vol. III, 22-32, 2000.
doi:10.1117/12.401662

8. Bahar, E. and B. S. Lee, "Radar scatter cross section for two-dimensional random surfaces—full wave solutions and comparisons with experiments," Waves Random Media, Vol. 6, 1-23, 1996.
doi:10.1080/13616679609409792

9. Voronovich, A. G., "Wave scattering from rough surfaces," Springer Series on Wave Phenomena, Germany, 1994.

10. Voronovich, A. G., "Small slope approximation for electromagnetic wave scattering at a rough interface of two dielectric halfspaces," Waves Random Media, Vol. 4, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

11. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves Random Media, Vol. 11, 247-269, 2001.

12. Berginc, G., Y. Beniguel, and B. Chevalier, "Small slope approximation method: higher order contributions for scattering from 3-D surfaces," SPIE Scattering and surface roughness, Vol. II, 1999.

13. Berginc, G., Y. Beniguel, and B. Chevalier, "Extension of small-slope approximation method for 3-D scattering cross-section calculation of a rough convex object," PIERS Proceedings, Nantes, France, 582, 1998.

14. McDaniel, S. T., "Small-slope predictions of microwave backscatter from the sea surface," Waves Random Media, Vol. 11, 343-360, 2001.

15. Thorsos, E. I. and S. L. Broschat, "An investigation of the small slope approximation for scattering from rough surfaces, Part I: Theory," J.A coust.So c.A m., Vol. 97, No. 4, 2082-2093, 1995.

16. Broschat, S. L. and E. I. Thorsos, "An investigation of the small slope approximation for scattering from rough surfaces, Part II: Numerical studies," J. Acoust. Soc. Am., Vol. 101, No. 5, 2615-1625, 1997.
doi:10.1121/1.418502

17. Semyonov, B., "Approximate computation of scattering electromagnetic waves by rough surface contour," Radio Eng. Electron. Phys., Vol. 11, 1179-1187, 1966.

18. Bourlier, C., J. Saillard, and G. Berginc, "Theoretical study of the Kirchhoff integral from two-dimensional randomly rough surface with shadowing effect—application on the backscattering coefficient for a perfectly conducting surface," Waves Random Media, Vol. 11, 91-118, 2001.
doi:10.1088/0959-7174/11/2/302

19. Bourlier, C., J. Saillard, and G. Berginc, "Bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase and scalar approximation with shadowing effect—comparisons with experiments and application to the sea surface," Waves Random Media, Vol. 11, 119-147, 2001.
doi:10.1088/0959-7174/11/2/303

20. Bourlier, C., J. Saillard, and G. Berginc, "The shadowing function," Progress in Electromagnetic Research, J. A. Kong (ed.), Vol. 27, 226–287, EMW, Cambridge, 2000.

21. Bourlier, C., J. Saillard, and G. Berginc, "Study of the sea behavior," Progress In Electromagnetic Research, J. A. Kong (ed.), Vol. 27, 193–225, EMW, Cambridge, 2000.

22. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," Journal.Ge o.R es., Vol. 102, No. C7, 781-796, 1997.

23. Quilfen, Y., B. Chapron, T. Elfouhaily, K. Katsaros, and J. Tournadre, "Observation of tropical cyclones by high resolution scatterometry," Journal.Ge o.R es., Vol. 103, 7767-7786, 1998.
doi:10.1029/97JC01911

24. Bentamy, A., P. Queffeulou, Y. Quilfen, and K. Katsaros, "Ocean surface wind fields estimated from satellite active and passive microwave instruments," IEEE Trans.Ge osci.R emote Sens., Vol. 37, 2469-86, 1999.
doi:10.1109/36.789643

25. Wentz, F. J., S. Peteherich, and L. A. Thomas, "A model function for ocean radar cross section at 14.6 GHz," J. Geophys. Res., Vol. 89, 3689-3704, 1984.
doi:10.1029/JC089iC03p03689

26. Nghiem Fuk, S. V., K. Li, and G. Neumann, "The dependence of ocean backscatter at Ku-band on oceanic and atmospheric parameters," IEEE Trans.Ge osci.R emote Sens., Vol. 35, 581-600, 1997.
doi:10.1109/36.581972

27. Cox, C. and W. Munk, "Statistics of the sea surface derived from sun glitter," Journal Mar. Res., Vol. 13, 198-226, 1954.

28. Ellison, W., A. Balana, G. Delbos, K. Lamdaouchi, L. Eymard, C. Guillou, and C. Prigent, "New permittivity measurements of seawater," Radio Sci., Vol. 33, 639-648, 1998.
doi:10.1029/97RS02223

29. Fung, A. K. and K. K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE Journal Oceanic Eng., Vol. 7, No. 4, 166-176, 1982.
doi:10.1109/JOE.1982.1145535

30. Yoshimori, K., K. Itoh, and Y. Ichioka, "Optical characteristics of a wind-roughened water surface: a two dimensional theory," Applied Optics, Vol. 34, No. 27, 6236-6247, 1995.
doi:10.1364/AO.34.006236

31. Appel, J. R., "An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter," Journal Geo. Res., Vol. 99, No. C7, 1-21, 1994.

32. Lemaire, D., P. Sobieski, and A. Guissard, "Full-range sea surface spectrum in nonfully developed state for scattering calculations," IEEE Trans. Geosci. Remote Sens., Vol. 37, 1038-1051, 1999.
doi:10.1109/36.752222

33. Smith, B. G., "Lunar surface roughness, shadowing and thermal emission," J. Geophysical Research, Vol. 72, No. 16, 4059-4067, 1967.
doi:10.1029/JZ072i016p04059

34. Smith, B. G., "Geometrical shadowing of a random rough surface," IEEE Trans. Ant. Prop., Vol. 15, 668-671, 1967.
doi:10.1109/TAP.1967.1138991

35. Wagner, R. J., "Shadowing of randomly rough surfaces," J. Acoust. Soc. Am, Vol. 41, No. 1, 138-147, 1966.
doi:10.1121/1.1910308

36. Bourlier, C., J. Saillard, and G. Berginc, "Effect of correlation between shadowing and shadowed points on the Wagner and Smith monostatic one-dimensional shadowing function," IEEE Trans.A nt.Pr op., Vol. 48, 437-446, 2000.
doi:10.1109/8.841905

37. Sancer, M. I., "Shadow-corrected electromagnetic scattering from a randomly rough surface," IEEE Trans. Ant. Prop., Vol. 17, 577-585, 1969.
doi:10.1109/TAP.1969.1139516

38. Abramovitz, M. and I. A. Segun, Handbook of Mathematical Functions, Dover Publications, 1972.

39. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Boston, MA, 1994.

40. Voronovich, V., U. Zavorotny, and V. G. Irisov, "Sea-roughness spectrum retrieval from radar and radiometric measurements," Int.Ge os.and Remote Sensing Symp., IEEE, Piscataway, NJ, 3102–3104, 2000.