submit Submit login
Vol. 98
Latest Volume
All Volumes
PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-06
A Novel Radar Waveform Design for Anti-Interrupted Sampling Repeater Jamming via Time-Frequency Random Coded Method
By
Progress In Electromagnetics Research M, Vol. 98, 89-99, 2020
Abstract
According to the orthogonality of each sub-carrier in the multi-carrier phase-coded (MCPC) signal, this paper focuses on anti-interrupted sampling repeater jamming (ISRJ) and creatively proposes a novel radar signal based on time-frequency random coded (TFRC) method, namely TFRC-MCPC signal. Based on the perspective of waveform design, the TFRC-MCPC signal adopts a chaotic sequence with good pseudo-random to code each chip in time-domain and each subcarrier in frequency-domain. The TFRC method increases the pseudo-randomness of radar waveform pulses and reduces the correlation between radar echo and ISRJ, thereby effectively suppressing the interference of false targets. The TFRC-MCPC method and common filter design methods do not conflict with each other and can be used in combination. The simulation experiment results show that under the typical parameters described in the paper, compared with the traditional MCPC signal and LFM signal, the signal-jamming ratio (SJR) improvement factor of the TFRC-MCPC signal is optimized by 1-2dB after pulse compression, which verifies its feasibility and effectiveness.
Citation
Ji Li, Xiang Luo, Xingyan Duan, Wei Wang, and Jianping Ou, "A Novel Radar Waveform Design for Anti-Interrupted Sampling Repeater Jamming via Time-Frequency Random Coded Method," Progress In Electromagnetics Research M, Vol. 98, 89-99, 2020.
doi:10.2528/PIERM20072302
References

1. Lu, G., S. Liao, S. Luo, and B. Tang, "Cancellation of complicated DRFM range false targets via temporal pulse diversity," Progress In Electromagnetics Research C, Vol. 16, 69-84, 2010.
doi:10.2528/PIERC10061401

2. Wang, et al., "Mathematic principles of interrupted-sampling repeater jamming (ISRJ)," Sci. China Ser. F: Inf. Sci., Vol. 50, No. 1, 113-123, 2007.
doi:10.1007/s11432-007-2017-y

3. Lu, Y. L. and S. Y. Li, "CFAR detection of DRFM deception jamming based on singular spectrum analysis," Proc. IEEE Int. Conf. Signal Process., Commun. Comput. (ICSPCC), 1-6, Xiamen, China, Oct. 2017.

4. Li, C. Z., W. M. Su, and H. Gu, "Improved interrupted sampling repeater jamming based on DRFM," Proc. IEEE Int. Conf. Signal Process., Commun. Comput. (ICSPCC), 254-257, Guilin, Chian, Aug. 2014.

5. Liu, J. B., L. Li, and Z. F. Liu, "Research on smart noise jamming against PD radar," Inf. Res., Vol. 37, 19-21, Feb. 2011.

6. Shen, R., Z. Liu, J. Sui, and X. Wei, "Study on interrupted-sampling repeater jamming performance based on intra-pulse frequency coded signal," Proc. SPIE, Vol. 10420, Art. No. 104204, Jul. 2017.

7. Pan, X., W. Wang, D.-J. Feng, J. Huang, Q. Fu, and G. Wang, "Rotational micro-motion modulated jamming for countering ISAR based on intermittent sampling repeater," Progress In Electromagnetics Research C, Vol. 36, 41-56, 2013.

8. Guo, L., H. Li, and Q. S. Li, "Interrupted sampling smart jamming method for coherent radar," Mod. Def. Technol., Vol. 41, 119-124, Mar. 2013.

9. Wei, X., G. Zhang, and W. Liu, "Efficient filter design against interrupted sampling repeater jamming for wideband radar," EURASIP J. Adv. Signal Process., Vol. 9, 1-12, Dec. 2017.

10. Zhou, C., Z. Y. Tang, and F. L. Yu, "Anti intermittent sampling repeater jamming method based on intrapulse orthogonality," J. Syst. Eng. Electron., Vol. 2, 269-275, 2017.

11. Gong, S. X., X. Z. Wei, and X. Li, "ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis," J. Syst. Eng. Electron., Vol. 25, No. 6, 996-1003, Dec. 2014.

12. Zhou, C., F. F. Liu, and Q. H. Liu, "An adaptive transmitting scheme for interrupted sampling repeater jamming suppression," Sensors, Vol. 17, No. 11, 2480, 2017.

13. Aubry, A., A. D. Maio, and Y. W. Huang, "Robust design of radar Doppler filters," IEEE Trans. Signal Process., Vol. 64, No. 22, 5848-5860, Nov. 2016.

14. Yuan, H., C. Y. Wang, and L. An, "ECCM scheme against interrupted-sampling repeater jamming based on compressed sensing signal reconstruction," J. Syst. Eng. Electron., Vol. 40, No. 4, 717-725, Apr. 2018.

15. Yuan, H., C. Y. Wang, and X. Li, "A method against interrupted-sampling repeater jamming based on energy function detection and band-pass filtering," Int. Antenn. Propag., Vol. 2017, 1-9, Art. No. 6759169, Mar. 2017.

16. Wei, Z. H., Z. Liu, and P. Bo, "ECCM scheme against interrupted sampling repeater jammer based on parameter-adjusted waveform design," Sensors, Vol. 18, No. 4, 1141, 2018.

17. Zhou, C., F. Shi, and Q. Liu, "Research on parameters estimation and suppression for C&I jamming," Proc. CIE Int. Conf. Radar, 1-4, Oct. 2016.

18. Zhou, C., Q. Liu, and X. Chen, "Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer," IET Radar, Sonar & Navigation, Vol. 12, No. 1, 56-63, 2018.

19. Zhang, J. Z., H. Q. Mu, S. L. Wen, and Y. B. Li, "Anti intermittent sampling repeater jamming method based on stepped LFM waveform," Syst. Eng. Electron., Vol. 41, 1013-1020, 2019.

20. Huang, Y. L., Y. Zeng, and Y. Fu, "Design and characteristic analysis of multicarrier chaotic phase coded radar pulse train signal," Int. J. Antenn. Propag., Vol. 2014, Art. No. 724294, 2014.

21. Sen, S. and C. W. Glover, "Optimal multicarrier phase-coded waveform design for detection of extended targets," IEEE Radar Conf., 1-4, Ttawa, Canada, Apr. 2013.

22. Yu, M., S. B. Dong, and X. Y. Duan, "A novel interference suppression method for interrupted sampling repeater jamming based on singular spectrum entropy function," Sensors, Vol. 19, No. 1, 2019.

23. Chen, J., S. Xu, and J. W. Zou, "Interrupted-sampling repeater jamming suppression based on stacked bidirectional gated recurrent unit network and infinite training," IEEE Access, Vol. 7, 107428-107437, Aug. 2019.

24. Davis, R. M., R. L. Fante, and R. P. Perry, "Phase-coded waveforms for radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 43, 401-408, 2007.

25. Tang, L., Y. Zhu, and Q. Fu, "Designing waveform sets with good correlation and stopband properties for MIMO radar via the gradient-based method," Sensors, Vol. 17, 999, 2017.

26. Deng, H., "Polyphase code design for orthogonal netted radar systems," IEEE Trans. Signal Process., Vol. 52, 3126-3135, 2004.

27. Yang, Y., R. S. Blum, and Z. S. He, "MIMO radar waveform design via alternating projection," IEEE Trans. Signal Process., Vol. 58, 1440-1445, 2010.

28. Yang, Y. and R. S. Blum, "MIMO radar waveform design based on mutual information and minimummean-square error estimation," IEEE Trans. Aerosp. Electron. Syst., Vol. 43, 330-343, 2007.

29. Chen, Z. K., J. Wang, and X. L. Qiao, "Waveform design for MIMO radar with sparse antenna array," Proc. 2015 IET Int. Radar Conf., 1-5, Hangzhou, China, Oct. 14–16, 2015.

30. Wang, W., Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, "A novel image classification approach via dense-mobile net models," Mobile Information Systems, Vol. 2020, Article ID 7602384, 8 pages, 2020.

31. Wang, W., C. Zhang, J. Tian, J. Ou, and I. Li, "A SAR image targets recognition approach via novel SSF-net modelse," Computational Intelligence and Neuroscienc, Vol. 2020, Article ID 8859172, 9 pages, 2020.

32. Wang, W., C. Zhang, J. Tian, et al. "High resolution radar targets recognition via inception-based VGG (IVGG) networks," Computational Intelligence and Neuroscience, Vol. 2020, Article ID 8893419, 11 pages, 2020.