login
Vol. 76
Latest Volume
All Volumes
PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-03
HIS-EBG Unit Cells for Pattern and Frequency Reconfigurable Dual Band Array Antenna
By
Progress In Electromagnetics Research M, Vol. 76, 123-132, 2018
Abstract
The incorporation of Electromagnetic Band Gap (EBG) unit cells, a type of metamaterials, with a dual band array antenna is proposed. By configuring the band gap of EBG cells accordingly, the pattern of the array antenna is successfully reconfigured at lower band of 2.4 GHz while maintaining the pattern at higher band of 5.8 GHz. Three pattern directions have been achieved: initial radiation pattern, 349-degree shift and 11-degree shift of the H-field. The array antenna is also frequency reconfigurable by suppressing the radiation pattern of the antenna in four different EBG cells configurations. In pattern shifting mode, the realized gain of the antenna is satisfactorily maintained and is comparable with the standalone of dual band array antenna with the range of gains from 5.08 dBi to 6.14 dBi and 7.83 dBi at 5.8 GHz.
Citation
Raimi Dewan, Mohamad Kamal Abd Rahim, Mohamad Rijal Hamid, Mohamed Himdi, Huda Bin Abdul Majid, and Noor Asmawati Binti Samsuri, "HIS-EBG Unit Cells for Pattern and Frequency Reconfigurable Dual Band Array Antenna," Progress In Electromagnetics Research M, Vol. 76, 123-132, 2018.
doi:10.2528/PIERM18090202
References

1. Muhamad, M., M. Abu, Z. Zakaria, and H. Hassan, "Novel artificial magnetic conductor for 5G application," Indones. J. Electr. Eng. Comput. Sci., Vol. 5, No. 3, 636-642, 2017.
doi:10.11591/ijeecs.v5.i3.pp636-642

2. Fiddy, M. A. and R. Tsu, "Understanding metamaterials," Waves in Random and Complex Media, Vol. 20, No. 2, 202-222, 2010.
doi:10.1080/17455030903581156

3. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for x-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
doi:10.2528/PIERM14052402

4. Dewan, R., et al. "Artificial magnetic conductor for various antenna applications: An overview," Int. J. RF Microw. Comput. Eng., e21105-n/a, 2017.

5. Rajo-Iglesias, E., Ó., Quevedo-Teruel, and L. Inclán-Sánchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, 2008.
doi:10.1109/TAP.2008.923306

6. Li, J., J. Mao, S. Ren, and H. Zhu, "Embedded planar EBG and shorting via arrays for ssn suppression in multilayer PCBs," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1430-1433, 2012.

7. Dewan, R., M. K. A. Rahim, M. R. Hamid, H. A. Majid, M. F. M. Yusoff, and M. E. Jalil, "Reconfigurable antenna using capacitive loading to Artificial Magnetic Conductor (AMC)," Microw. Opt. Technol. Lett., Vol. 58, No. 10, 2422-2429, 2016.
doi:10.1002/mop.30062

8. Choi, J. and S. Lim, "Frequency and radiation pattern reconfigurable small metamaterial antenna using its extraordinary zeroth-order resonance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, 2010.

9. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702

10. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

11. Majid, H. A., M. K. A. Rahim, M. R. Hamid, and O. Ayop, "Reconfigurable wideband to narrowband antenna using tunable EBG structure," Appl. Phys. A Mater. Sci. Process., Vol. 117, No. 2, 657-661, 2014.
doi:10.1007/s00339-014-8719-2

12. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531

13. Zhang, J., G. Ci, Y. Cao, N. Wang, and H. Tian, "A wide band-gap slot fractal UC-EBG based on moore space-filling geometry for microwave application," IEEE Antennas and Wireless Propagation Letters,, Vol. 16, 33-37, 2017.
doi:10.1109/LAWP.2016.2553135

14. Ali, M., B. Abbasi, S. Member, S. S. Nikolaou, M. A. Antoniades, and M. Nikoli, "Compact EBG-backed planar monopole for BAN wearable applications," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 453-463, 2017.
doi:10.1109/TAP.2016.2635588

15. Zhao, L., D. Yang, H. Tian, Y. Ji, and K. Xu, "A pole and AMC point matching method for the synthesis of HSF-UC-EBG structure with simultaneous AMC and EBG properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.
doi:10.2528/PIER12062406

16. Dewan, R., M. K. A. Rahim, M. R. Hamid, M. F. M. Yusoff, H. A. Majid, and B. A. F. Esmail, "Dual band to wideband pentagon-shaped patch antenna with frequency reconfigurability using EBGs," Int. J. Electr. Comput. Eng., Vol. 8, No. 4, 2557-2563, 2018.

17. Dewan, R., M. K. A. Rahim, M. Himdi, M. R. Hamid, F. Zubir, and N. A. Samsuri, "Frequency reconfigurability array antenna with electromagnetic band gap (EBG) cells," Asia-Pacific Microw. Conf. Proceedings, APMC, 747-750, 2017.

18. Balanis, C. A., "Fundamental parameters and definitions for antennas," Modern Antenna Handbook, 1-56, John Wiley & Sons, Inc., 2007.