login
Vol. 92
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-09
Design of a 3-d Tunable Band-Stop Frequency Selective Surface with Wide Tuning Range
By
Progress In Electromagnetics Research Letters, Vol. 92, 9-16, 2020
Abstract
In this paper, a three-dimensional (3-D) tunable band-stop frequency selective surface (FSS) with wide tuning range is presented. The proposed tunable 3-D FSS consists of a periodic array of an annular resonator loaded with two varactor diodes. By controlling the reverse voltage of the varactor diodes, the resonance frequency could be tuned in a wide frequency range. Full-wave simulation shows 100% tuning range from 3.0 GHz to 6.0 GHz with respect to lower resonance frequency. The simulated results exhibit stable band-stop performance under different incident angles (up to 45˚). By cascaded two 3-D tunable FSSs, the bandwidth and selectivity performance could be further enhanced. The proposed 3-D FSS with its stable stop-band performance can be a potential candidate to shield the RF signals which is the major source of problem leading to RF device malfunctions.
Citation
Shengli Jia, Bingzheng Xu, and Ting Zheng, "Design of a 3-d Tunable Band-Stop Frequency Selective Surface with Wide Tuning Range," Progress In Electromagnetics Research Letters, Vol. 92, 9-16, 2020.
doi:10.2528/PIERL20041902
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, USA, 2000.
doi:10.1002/0471723770

2. Yu, Y. M., C. N. Chiu, Y. P. Chiou, and T. L. Wu, "An effective via-based frequency adjustment and minimization methodology for single-layered frequency-selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1061-1049, 2015.
doi:10.1109/TAP.2015.2398123

3. Liu, N., X. J. Sheng, and J. J. Fan, "A compact miniaturized frequency selective surface with stable resonant frequency," Progress in Electromagnetic Research Letters, Vol. 62, 17-22, 2016.
doi:10.2528/PIERL16070608

4. Mias, C. and J. H. Yap, "A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 1955-1962, 2007.
doi:10.1109/TAP.2007.900228

5. Vez, F. J. L., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez-Lopez, "Active frequency selective surfaces based on loaded ring patches," 2018 IEEE International Conference on Computational Electromagnetics, 1-2, 2018.

6. Sivasamy, R., B. Moorthy, and M. Kanagasabai, "A wideband frequency tunable FSS for electromagnetic shielding applications," IEEE Trans. on Electromagnetic Compatibility, Vol. 60, 280-283, 2018.
doi:10.1109/TEMC.2017.2702572

7. Withayachumnankul, W., C. Fumeaux, and D. Abbott, "Planar array of electric-LC resonators with broadband tunability," Antennas and Wireless Propagation Letters, Vol. 10, 557-580, 2011.

8. Neto, A. G., J. C. e Silva, A. G. Barboza, D. F. Mamedes, I. B. G. Coutinho, and M. de Oliveira Alencar, "Varactor-tunable four arms star bandstop FSS with a very simple bias circuit," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, 2019.

9. Mamedes, D. F., A. Gomes Neto, J. C. e Silva, and J. Bornemann, "Design of reconfigurable frequency-selective surfaces including the PIN diode threshold region," IET Microwaves, Antennas and Propagation, Vol. 12, No. 9, 1483-1486, 2018.
doi:10.1049/iet-map.2017.0761

10. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas Wireless Propag. Lett, Vol. 12, 781-784, 2013.
doi:10.1109/LAWP.2013.2270950

11. Rafique, U. and S. Agarwal, "A modified frequency selective surface band-stop filter for ultra-wideband applications," 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1653-1656, 2018.
doi:10.1109/ICACCI.2018.8554690

12. Tao, K., B. Li, Y. M. Tang, M. Zhang, and Y. M. Bo, "Analysis and implementation of 3D bandpass frequency selective structure with high frequency selectivity," Electronics Letters, Vol. 53, No. 5, 324-326, 2017.
doi:10.1049/el.2016.4469

13. Azemi, R. S. N. and W. S. T. Rowe, "Development and analysis of 3D frequency selective surfaces," IEEE Asia-Pacific Microwave Conference Proceedings (APMC), 2011.

14. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "3D frequency selective surfaces," IEEE Antennas and Propagation Conference, 2012.

15. Omar, A. A. and Z. Shen, "Multiband high-order bandstop 3-D frequency-selective structures," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2217-2226, 2016.
doi:10.1109/TAP.2016.2546967

16. Li, B. and Z. Shen, "Three-dimensional bandpass frequency-selective structure with multiple transmission zeros ," IEEE Trans. Microw. Theory Tech, Vol. 61, No. 10, 3578-3589, 2013.
doi:10.1109/TMTT.2013.2279776

17. Kanth, V. K. and S. Raghavan, "3D frequency selective surfaces based on substrate integrated waveguide technology," 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), 2018.

18. Yu, W., G. Q. Luo, Y. Yu, Z. Liao, H. Jin, and Z. Shen, "Broadband band-absorptive frequency-selective rasorber with a hybrid 2-D and 3-D structure," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 18, 1701-1705, 2019.
doi:10.1109/LAWP.2019.2928362