Vol. 64
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-06
Design of a Novel Compact Cup Feed for Parabolic Reflector Antennas
By
Progress In Electromagnetics Research Letters, Vol. 64, 81-86, 2016
Abstract
This paper describes the concept and design of a novel compactself-supported cup feedantenna for parabolic reflectors. The feed antenna consists of an open waveguide cup which is excited by a disk loaded dipole. This structure is fed by a coaxial waveguide through a split-coaxial balun and has a rear radiation pattern toward the reflector antenna. Two different types of this configuration are designed in this paper: a linearly-polarized grid reflector antenna fed by a single dipole excitation, and a circularly-polarized solid reflector antenna fed by a cross dipole excitation. The measurement is done for the former, and simulation results of the latter via two different software packages CST and HFSS are compared in this paper. Analyzing the results shows that both types of cup feed antenna have an excellent aperture efficiency and low side lobe level.
Citation
Amir Moallemizadeh, Reza Sarraf-Shirazi, and Mohammad Bod, "Design of a Novel Compact Cup Feed for Parabolic Reflector Antennas," Progress In Electromagnetics Research Letters, Vol. 64, 81-86, 2016.
doi:10.2528/PIERL16100501
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2005.

2. Liu, C., S. Yang, and Z. Nie, "Design of a parabolic reflector antenna with a compact splash-plate feed," Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2013, 24-244, 2013.

3. Poulton, G. T. and T. S. Bird, "Improved rear-radiating waveguide cup feeds," International Symposium on Antennas and Propagation, 1986, Vol. 24, 79-82, 1986.
doi:10.1109/APS.1986.1149782

4. Schwerdtfeger, R., "A coaxial dual mode feed system," 9th European Microwave Conference, 1979, 196-200, 1979.
doi:10.1109/EUMA.1979.332699

5. Kildal, P. S., "The hat feed: A dual-mode rear-radiating waveguide antenna having low cross polarization," IEEE Trans. Antennas Propag., Vol. 35, 1010-1016, Sep. 1987.
doi:10.1109/TAP.1987.1144221

6. Maula, M. Q. E. and L. Shafai, "Low-cost, microstrip-fed printed dipole for prime focus reflector feed," IEEE Trans. Antennas Propag., Vol. 60, 5428-5433, Nov. 2012.
doi:10.1109/TAP.2012.2208170

7. Maula, M. Q. E., L. Shafai, and Z. A. Pour, "A corrugated printed dipole antenna with equal beamwidths," IEEE Trans. Antennas Propag., Vol. 62, 1469-1474, Mar. 2014.
doi:10.1109/TAP.2013.2295598

8. Bird, T. S., Antenna Feeds, Encyclopedia of RF and Microwave Engineering, 2005.

9. Patel, K. N. and Y. Patenaude, "L-band integrated feed array design for mobile communication satellites," Canadian Journal of Electrical and Computer Engineering, Vol. 17, No. 3, 113-119, Jul. 1992.
doi:10.1109/CJECE.1992.6594367

10. Bolster, M. F., "A new type of circular polarizer using crossed dipoles," IRE Trans. Microwave Theory and Techniques, Vol. 9, No. 5, 385-388, Sep. 1961.
doi:10.1109/TMTT.1961.1125358

11. Makarov, S. N. and R. Ludwig, "Analytical model of the split-coaxial balun and its application to a linearly-polarized dipole or a CP turnstile," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 1909-1918, Jul. 2007.
doi:10.1109/TAP.2007.901503