Vol. 3
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-02-05
Temporal Solitons of Modified Complex Ginzberg Landau Equation
By
Progress In Electromagnetics Research Letters, Vol. 3, 17-24, 2008
Abstract
In this paper we have reported soliton solution of one dimensional modified complex Ginzburg Landau equation. The parametric region where such soliton solution is possible is also identified.
Citation
Sahay Shwetanshumala, "Temporal Solitons of Modified Complex Ginzberg Landau Equation," Progress In Electromagnetics Research Letters, Vol. 3, 17-24, 2008.
doi:10.2528/PIERL08010401
References

1. Hasegawa, A., Plasma Instabilities and Nonlinear Effects, Springer Verlag, Berlin, 1975.

2. Mishra, M. and S. Konar, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2049-2058, 2007.
doi:10.1163/156939307783152830

3. Shwetanshumala, S., A. Biswas, and S. Konar, "Dynamically stable supergaussian solitons in semiconductor doped glass fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 901-912, 2006.
doi:10.1163/156939306776149888

4. Biswas, A., S. Konar, and E. Zerrad, "Soliton-soliton interaction with parabolic law nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 927-939, 2006.
doi:10.1163/156939306776149833

5. Konar, S. and A. Biswas, "Soliton-soliton interaction with kerr law nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1443-1453, 2005.
doi:10.1163/156939305775701859

6. Konar, S., S. Jana, and S. Shwetanshumala, "Incoherently coupled screening photovoltaic spatial solitons in a biased photovoltaic photo refractive crystals," Optics Communications, Vol. 273, 324-333, 2007.
doi:10.1016/j.optcom.2007.01.051

7. Konar, S., M. Mishra, and S. Jana, "Nonlinear evolution of cosh-Gaussian laser beams and generations of flat top spatial solitons in cubic quintic nonlinear media ," Physics Letts. A, Vol. 362, 505-510, 2007.
doi:10.1016/j.physleta.2006.11.025

8. Biswas, A., "Stochastic perturbation of parabolic law optical solutions," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1479-1488, 2007.

9. Mandal, B. and A. R. Chowdhury, "Spatial soliton scattering in a quasi phase matched quadratic media in presence of cubic nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 123-135, 2007.
doi:10.1163/156939307779391704

10. Crutcher, S., A. Biswas, M. D. Aggrawal, and M. E. Edwards, "Oscillatory behaviour of spatial solitons in two dimensional waveguides and stationary temporal power law solitons in optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 761-772, 2006.
doi:10.1163/156939306776143361

11. Jana, S. and S. Konar, "Tunable spectral switching in the far field with a chirped cosh-gaussian pulse," Optics Communications, Vol. 267, 24-31, 2006.
doi:10.1016/j.optcom.2006.06.013

12. Konar, S. and S. Jana, "Linear and nonlinear propagation of sinh-Gaussian pulses in dispersive media possessing Kerr nonlinearity," Optics Communication, Vol. 236, No. 1-3, 7-20, 2004.
doi:10.1016/j.optcom.2004.03.012

13. Konar, S., J. Kumar, and P. K. Sen, "Suppression of soliton instability by higher order nonlinearity in long-haul optical communication systems," J. Nonlinear Optical Physics & Materials, Vol. 8, 492, 1999.

14. Konar, S. and A. Sengupta, "Propagation of an elliptic Gaussian laser beam in a medium with saturable nonlinearity," J. Opt. Soc. Am B, Vol. 11, 1644, USA, 1994.
doi:10.1364/JOSAB.11.001644

15. Kaup, D. J. and A. C. Newell, "An exact solution for a derivative nonlinear Schrodinger equation," J. Math Phys., Vol. 19, 798, 1978.
doi:10.1063/1.523737

16. Hirota, R., "Exact N soliton solution of the wave equation of long waves in shallow water and in nonlinear lattices," J. Math Phys., Vol. 14, 805, 1973.
doi:10.1063/1.1666399

17. Anderson, D., "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A, Vol. 27, 3135, 1983.
doi:10.1103/PhysRevA.27.3135

18. Malomed, B., D. Anderson, M. Lisak, and M. L. Quiroga-Teixeiro, "Dynamics of solitary waves in the Zakharov model equations," Phy. Rev. E, Vol. 55, 962, 1997.
doi:10.1103/PhysRevE.55.962

19. Dinda, P. T., A. B. Moubissi, and K. Nakkeeran, "Letter to the editor: A collective variable approach for dispersion managed solitons," J. Phys. A: Math. Gen., Vol. 34, L103, 2001.
doi:10.1088/0305-4470/34/10/104

20. Biswas, A., "Dynamics of stochastic optical solitons," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 145-152, 2004.
doi:10.1163/156939304323062004

21. He, J. H., "Approximate analytical solution for seepage flow with fractional derivatives in porus media," Comput. Meth. Appl. Mech.Eng., Vol. 167, No. 12, 57, 1998.
doi:10.1016/S0045-7825(98)00108-X

22. Acunto, M. D., "Self excited systems: Analytical determination of limit cycles," Chaos, Solitons Fractals, Vol. 30, No. 3, 719, 2006.
doi:10.1016/j.chaos.2006.03.070

23. Moores, J. D., "On the Ginzburg-Landau laser mode-locking model with fifth order saturable absorber term," Opt. Comm., Vol. 96, 65, 1993.
doi:10.1016/0030-4018(93)90524-9

24. Akhmediev, N. N., V. V. Afanasjev, and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic quintic complex Ginzburg Landau equation," Phys. Rev. E, Vol. 53, 1190, 1996.
doi:10.1103/PhysRevE.53.1190

25. Akhmediev, N. N., J. M. Soto-Crespo, and A. Town, "Pulsating solitons, chaotic solitons, period doubling and pulse co-existence in mode-locked lasers: Complex Ginzburg Landau equation approach," Phys. Rev. E, Vol. 63, 056602, 2001.
doi:10.1103/PhysRevE.63.056602

26. Yomba, E. and T. C. Kofane, "Exact solutions of the onedimensional modified complex Ginzburg Landau equation," Chaos, Solitons and Fractals, Vol. 15, 197, 2003.

27. Mohamddou, A., A. K. Jiotsa, and T. C. Kofane, "Pattern selection and modulation instability in the one dimensioal modified complex Ginzburg Landau equation," Chaos, Solitons and Fractals, Vol. 24, 957, 2005.
doi:10.1016/j.chaos.2004.09.106

28. Hong, W. P., "Stable stationary solitons of the one dimensional modified complex Ginzburg Landau equation," Z. Naturforsch, Vol. 62a, 373, 2007.

29. Panajotovic, A., D. Milovic, and A. Biswas, "Influence of even order dispersion on soliton transmission quality with coherent interference," Progress In Electromagnetics Research B, Vol. 3, 63-72, 2008..
doi:10.2528/PIERB07120404

30. Ballav, M. and A. R. Chowdhury, "On a study of diffraction and dispersion managed soliton in a cylindrical media," Progress In Electromagnetics Research, Vol. 63, 33-50, 2006.
doi:10.2528/PIER06051601

31. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201

32. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102

33. Gangwar, R., S. P. Singh, and N. Singh, "Soliton based optical communication," Progress In Electromagnetics Research, Vol. 74, 157-166, 2007.
doi:10.2528/PIER07050401