Vol. 35
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-31
Improved Formulation of Scattering Matrices for Semi-Analytical Methods That Is Consistent with Convention
By
Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011
Abstract
The literature describing scattering matrices for semi-analytical methods almost exclusively contains inefficient formulations and formulations that deviate from long-standing convention in terms of how the scattering parameters are defined. This paper presents a novel and highly improved formulation of scattering matrices that is consistent with convention, more efficient to implement, and more versatile than what has been otherwise presented in the literature. Semi-analytical methods represent a device as a stack of layers that are uniform in the longitudinal direction. Scattering matrices are calculated for each layer and are combined into a single overall scattering matrix that describes propagation through the entire device. Free space gaps with zero thickness are inserted between the layers and the scattering matrices are made to relate fields which exist outside of the layers, but directly on their boundaries. This framework produces symmetric scattering matrices so only two parameters need to be calculated and stored instead of four. It also enables the scattering matrices to be arbitrarily interchanged and reused to describe longitudinally periodic devices more efficiently. Numerical results are presented that show speed and efficiency can be increased by more than an order of magnitude using the improved formulation.
Citation
Raymond C. Rumpf, "Improved Formulation of Scattering Matrices for Semi-Analytical Methods That Is Consistent with Convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.
doi:10.2528/PIERB11083107
References

1. Helfert, S. F. and R. Pregla, "The method of lines: A versatile tool for the analysis of waveguide structures," Electromagnetics, Vol. 22, 615-637, Taylor & Francis, New York, 2002.
doi:10.1080/02726340290084166

2. Jamid, H. A. and M. N. Akram, "Analysis of deep waveguide gratings: An efficient cascading and doubling algorithm in the method of lines framework," J. Lightwave Technol., Vol. 20, No. 7, 1204-1209, 2002.
doi:10.1109/JLT.2002.800350

3. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

4. Moharam, M. G., D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1077-1086, 1995.
doi:10.1364/JOSAA.12.001077

5. Berreman, D. W., "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am. A, Vol. 62, No. 4, 502-510, 1972.
doi:10.1364/JOSA.62.000502

6. Pendry, J. B., "Photonic band structures," J. Modern Optics, Vol. 41, No. 2, 209-229, 1994.
doi:10.1080/09500349414550281

7. Li, Z.-Y. and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 046607, 2003.
doi:10.1103/PhysRevE.67.046607

8. Matthews, Jr., E. W., "The use of scattering matrices in microwave circuits," IRE Trans. on Microwave Theory and Techniques, 21-26, 1955.
doi:10.1109/TMTT.1955.1124941

9. Carlin, H. J., "The scattering matrix in network theory," IRE Trans. On Circuit Theory, Vol. 3, No. 2, 88-97, 1956.

10. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. on Microwave Theory and Techniques, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964

11. Collin, R. E., Foundations for Microwave Engineering, 1st Ed., 170-182, McGraw Hill, 1966.

12. Pozar, D. M., Microwave Engineering, 3rd Ed., 174-183, Wiley, 2005.

13. Rizzi, P. A., Microwave Engineering Passive Circuits, 1st Ed., 168-176, Prentice Hall, 1988.

14. Tan, E. L., "Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings," J. Modern Optics, Vol. 53, No. 4, 417-428, 2006.
doi:10.1080/09500340500407701

15. Li, L., "Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings," J. Opt. Soc. Am. A, Vol. 11, No. 11, 2829-2836, 1994.
doi:10.1364/JOSAA.11.002829

16. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.
doi:10.1364/JOSAA.13.001024

17. http://cp.literature.agilent.com/litweb/pdf/5989-6353EN.pdf..

18. Borsboom, P.-P. and H. J. Frankena, "Field analysis of two-dimensional integrated optical gratings," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1134-1141, 1995.
doi:10.1364/JOSAA.12.001134

19. Lin, L.-L., Z.-Y. Li, and K.-M. Ho, "Lattice symmetry applied in transfer-matrix methods for photonic crystals," J. Appl. Phys., Vol. 94, No. 2, 811-821, 2003.
doi:10.1063/1.1587011

20. Ko, D. Y. K. and J. R. Sambles, "Scattering matrix method for propagation of radiation in stratified media: Attenuated total reflection studies of liquid crystals," J. Opt. Soc. Am. A, Vol. 5, No. 11, 1863-1866, 1988.
doi:10.1364/JOSAA.5.001863

21. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.
doi:10.1364/JOSAA.13.001024

22. Silberstein, E., P. Lalanne, J.-P. Hugonin, and Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Am. A, Vol. 18, No. 11, 2865-2875, 2001.
doi:10.1364/JOSAA.18.002865

23. Gralak, B., S. Enoch, and G. Tayeb, "From scattering or impedance matrices to Bloch modes of photonic crystals," J. Opt. Soc. Am. A, Vol. 19, No. 8, 1547-1554, 2002.
doi:10.1364/JOSAA.19.001547

24. Li, L., "Note on the S-matrix propagation algorithm," J. Opt. Soc. Am. A, Vol. 20, No. 4, 655-660, 2003.
doi:10.1364/JOSAA.20.000655

25. Kim, H., I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A, Vol. 24, No. 8, 2313-2327, 2007.
doi:10.1364/JOSAA.24.002313

26. Tervo, J., M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, "Efficient bragg waveguide-grating analysis by quasi-rigorous approach based on redheffer's star product," Optics Commun., Vol. 198, 265-272, 2001.
doi:10.1016/S0030-4018(01)01530-9

27. Green, A. A., E. Istrate, and E. H. Sargent, "Efficient design and optimization of photonic crystal waveguides and couplers: The interface diffraction method," Optics Express, Vol. 13, No. 19, 7304-7318, 2005.
doi:10.1364/OPEX.13.007304

28. Lalanne, P. and E. Silberstein, "Fourier-modal methods applied to waveguide computational problems," Opt. Lett., Vol. 25, No. 15, 1092-1094, 2000.
doi:10.1364/OL.25.001092

29. Mingaleev, S. F. and K. Busch, "Scattering matrix approach to large-scale photonic crystal circuits," Opt. Lett., Vol. 28, No. 8, 619-621, 2003.
doi:10.1364/OL.28.000619

30. Whittaker, D. M. and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B, Vol. 60, No. 4, 2610-2618, 1999.
doi:10.1103/PhysRevB.60.2610

31. Li, Z.-Y. and K. M. Ho, "Light propagation in semi-infinite photonic crystals and related waveguide structures," Phys. Rev. B, Vol. 68, 155-101, 2003.

32. Liscidini, M., D. Gerace, L. C. Andreani, and J. E. Sipe, "Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media," Phys. Rev. B, Vol. 77, 035324, 2008.
doi:10.1103/PhysRevB.77.035324

33. Moharam, M. G. and A. B. Greenwell, "Efficient rigorous calculations of power flow in grating coupled surface-emitting devices," Proc. SPIE, Vol. 5456, 57-67, 2004.
doi:10.1117/12.549477

34. Freundorfer, A. P., "Optical vector network analyzer as a reflectometer," Appl. Opt., Vol. 33, No. 16, 3559-3561, 1994.
doi:10.1364/AO.33.003559

35. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 8, 302-307, 1966.

36. Schneider, J. B. and R. J. Kruhlak, "Dispersion of homogeneous and inhomogeneous waves in the yee finite-difference time-domain grid," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 2, 280-287, 2001.
doi:10.1109/22.903087

37. Rumpf, R. C. Design and optimization of nano-optical elements by coupling fabrication to optical behavior, 60-84 Ph.D. Dissertation, University of Central Florida, 2006.

38. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, No. 9, 1870-1876, 1996.
doi:10.1364/JOSAA.13.001870

39. Li, L., "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am A, Vol. 14, No. 10, 2758-2767, 1997.
doi:10.1364/JOSAA.14.002758

40. Lalanne, P., "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A, Vol. 14, No. 7, 1592-1598, 1997.
doi:10.1364/JOSAA.14.001592

41. Götz, P., T. Schuster, K. Frenner, S. Rafler, and W. Osten, "Normal vector method for the RCWA with automated vector field generation," Optics Express, Vol. 16, No. 22, 17295-17301, 2008.
doi:10.1364/OE.16.017295

42. Redheffer, R., "Difference equations and functional equations in transmission-line theory," Modern Mathematics for the Engineer, Vol. 12, 282-337, E. F. Beckenbach, ed., McGraw-Hill, New York, 1961.

43. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B, Vol. 23, No. 3, 391-403, 2006.
doi:10.1364/JOSAB.23.000391

44. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

45. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pachaco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

46. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617