Vol. 125
Latest Volume
All Volumes
PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-03-16
Machine Learning Assisted Intelligent Antenna Parameters Estimation Using EOLRKC and SFIS Algorithms
By
Progress In Electromagnetics Research Letters, Vol. 125, 67-73, 2025
Abstract
In this research, the optimization of antenna parameters for the Vivaldi antenna, Inverted F antenna, and Probe Feed Microstrip Patch antenna was carried out using EOLRKC and the Sugeno Fuzzy Inference System (SFIS) machine learning techniques. The research explores numerical and conventional antenna design methods to understand the necessary concepts comprehensively. After a thorough analysis, an intelligent model for antenna selection recommends the best antenna based on various performance metrics evaluated with the Enhanced Logistic Regression Kernel Classifier. Additionally, the geometric properties of the antenna are discussed, and the SFIS is developed by integrating five primary learners to maximize the potential of each learner type. The EOLRK Classifier classifies antennas into three groups: Vivaldi, Inverted F, and Probe Feed Microstrip Patch, while SFIS determines the optimal parameters for antenna size. The accuracy of the EOLRK Classifier is assessed, while the performance of the Sugeno FIS is evaluated using MSE and MAPE. The proposed methodology achieves a MAPE below 4% and an accuracy exceeding 99%, demonstrating exceptional performance in parameter prediction and antenna classification. Implementing these methods has the potential to enhance innovative antenna design practices significantly.
Citation
Rajendran Ramasamy, Maria Anto Bennet, and Abbas Ali Farithkhan, "Machine Learning Assisted Intelligent Antenna Parameters Estimation Using EOLRKC and SFIS Algorithms," Progress In Electromagnetics Research Letters, Vol. 125, 67-73, 2025.
doi:10.2528/PIERL25012002
References

1. Alavi, Rezvan Rafiee and Rashid Mirzavand, "Range extension in partial spherical near-field measurement using machine learning algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 11, 2003-2007, Nov. 2020.

2. Jaiswal, Pawan Kumar and Rajarshi Bhattacharya, "Impact analysis and optimization of notched high-gain antipodal vivaldi antenna using machine learning," AEU --- International Journal of Electronics and Communications, Vol. 171, 154870, 2023.

3. Patel, Shobhit K., Jaymit Surve, Vijay Katkar, and Juveriya Parmar, "Machine learning assisted metamaterial-based reconfigurable antenna for low-cost portable electronic devices," Scientific Reports, Vol. 12, No. 1, 12354, 2022.

4. Ramasamy, Rajendran and Maria Anto Bennet, "Optimizable KNN and ANFIS algorithms development for accurate antenna parameter estimation," Progress In Electromagnetics Research C, Vol. 142, 207-218, 2024.
doi:10.2528/PIERC23091403

5. Alnas, Jude, Garrett Giddings, and Nathan Jeong, "Bandwidth improvement of an inverted-F antenna using dynamic hybrid binary particle swarm optimization," Applied Sciences, Vol. 11, No. 6, 2559, 2021.

6. Gao, Jing, Yubo Tian, and Xuezhi Chen, "Antenna optimization based on co-training algorithm of gaussian process and support vector machine," IEEE Access, Vol. 8, 211380-211390, 2020.

7. Verma, Ramesh Kumar and Dinesh Kumar Srivastava, "Optimization and parametric analysis of slotted microstrip antenna using particle swarm optimization and curve fitting," International Journal of Circuit Theory and Applications, Vol. 49, No. 7, 1868-1883, 2021.

8. Zhang, Ke, Rong Tan, Zhi Hao Jiang, Yong Huang, Lin Tang, and Wei Hong, "A compact, ultrawideband dual-polarized Vivaldi antenna with radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 7, 1323-1327, Jul. 2022.

9. Rajesh, N., K. Malathi, S. Raju, V. Abhai Kumar, S. Deepak Ram Prasath, and M. Gulam Nabi Alsath, "Design of Vivaldi antenna with wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2102-2105, Apr. 2017.

10. Pan, Yongsheng, Yang Cheng, and Yuandan Dong, "Dual-polarized directive ultrawideband antenna integrated with horn and Vivaldi array," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 1, 48-52, Jan. 2021.

11. Jia, Yongtao, Jiabao Luo, Xiaofei Ren, Gang Shi, and Ying Liu, "Design of low-RCS Vivaldi antenna based on characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 4, 1246-1250, 2024.

12. Kumar, Jakkuluri Vijaya and S. Maflin Shaby, "Design and optimization of triangular microstrip patch antenna using extreme learning machine (ELM)-based improved Crystal Structure Algorithm (CryStAl) for C-band application," International Journal of Communication Systems, Vol. 37, No. 7, e5721, 2024.
doi:10.1002/dac.5721

13. Zhang, Harry, "The optimality of naive Bayes," Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004), Vol. 1, No. 2, 3, 2004.

14. Yahya, Muhammad S., Socheatra Soeung, Sharul Kamal Abdul Rahim, Umar Musa, Saeed S. Ba Hashwan, and Md. Ashraful Haque, "Machine learning-optimized compact frequency reconfigurable antenna with RSSI enhancement for long-range applications," IEEE Access, Vol. 12, 10970-10987, 2024.

15. Ramasamy, Rajendran and Maria Anto Bennet, "An efficient antenna parameters estimation using machine learning algorithms," Progress In Electromagnetics Research C, Vol. 130, 169-181, 2023.
doi:10.2528/PIERC22121004

16. Jain, Rachit, Vandana Vikas Thakare, and Pramod Kumar Singhal, "Design and comparative analysis of THz antenna through machine learning for 6G connectivity," IEEE Latin America Transactions, Vol. 22, No. 2, 82-91, 2024.

17. Anvari, S., M. Abdollahi Azgomi, M. R. Ebrahimi Dishabi, and M. Maheri, "Weighted K-nearest neighbors classification based on Whale optimization algorithm," Iranian Journal of Fuzzy Systems, Vol. 20, No. 3, 61-74, 2023.

18. Minh, V. D., T. T. Ngan, T. M. Tuan, V. T. Duong, and N. T. Cuong, "An improvement in integrating clustering method and neural network to extract rules and application in diagnosis support," Iranian Journal of Fuzzy Systems, Vol. 19, No. 5, 147-165, 2022.