submit Submit login
Vol. 124
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-01-21
Improved Bandwidth of Patch Antenna Using Dual-Layer Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 124, 69-75, 2025
Abstract
A method for significantly improving the bandwidth of microstrip patch antennas is proposed, utilizing dual-layer metasurface (MS). The antenna employs coaxial probe feeding and consists of a truncated patch, an upper layer of 4 x 4 periodic N-shaped MS and a lower layer of 3×4 rectangular MS. By introducing multiple resonances via the dual-layer MSs, impedance matching of the patch antenna is greatly enhanced. Its overall geometric dimensions are 1.09λ0 x 1.09λ0 x 0.14λ0 (f0 = 5.5 GHz), and compared with patch antennas and single-layer metasurface antennas of the same size, it can substantially enhance the bandwidth and gain without significant cost and size increase. The proposed MS antenna operates from 4.7 to 6.66 GHz (39.8% fractional bandwidth), covering two-thirds of the C-band, with a peak realized gain of 9.3 dBi. Within 4.47-5.56 GHz, the realized gain of the antenna remains above 7.5 dBi, and the average gain across the entire operating band is 7 dBi.
Citation
Kangling Yang, and Mingjiang Wang, "Improved Bandwidth of Patch Antenna Using Dual-Layer Metasurface," Progress In Electromagnetics Research Letters, Vol. 124, 69-75, 2025.
doi:10.2528/PIERL24120601
References

1. Rana, Md. Sohel and Md. Mostafizur Rahman Smieee, "Design and analysis of microstrip patch antenna for 5G wireless communication systems," Bulletin of Electrical Engineering and Informatics, Vol. 11, No. 6, 3329-3337, Dec. 2022.

2. Lin, Shun-Yun and Kuang-Chih Huang, "A compact microstrip antenna for GPS and DCS application," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 1227-1229, Mar. 2005.

3. Patel, Devendra H. and G. D. Makwana, "A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication," International Journal of Computing and Digital Systems, Vol. 11, No. 1, 941-953, Feb. 2022.

4. Derneryd, A., "A theoretical investigation of the rectangular microstrip antenna element," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 4, 532-535, Jul. 1978.

5. Kara, Mehmet, "Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates," Microwave and Optical Technology Letters, Vol. 12, No. 3, 131-136, Jun. 1996.

6. Kumar, Girish and Kamala Prasan Ray, Broadband Microstrip Antennas, Artech House, Dedham, MA, 2002.

7. Lam, Ka Yan, Kwai-Man Luk, Kai Fong Lee, Hang Wong, and Kung Bo Ng, "Small circularly polarized U-slot wideband patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 87-90, Feb. 2011.

8. Liu, Neng-Wu, Xin-Peng Chen, Lei Zhu, Xi Chen, Guang Fu, and Ying Liu, "Low-profile triple-band microstrip antenna via sharing a single multi-mode patch resonator," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1580-1585, 2019.

9. Holloway, Christopher L., Edward F. Kuester, Joshua A. Gordon, John O'Hara, Jim Booth, and David R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, Apr. 2012.

10. Chung, Kwok L. and Sarawuth Chaimool, "Diamagnetic metasurfaces for performance enhancement of microstrip patch antennas," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 48-52, Rome, Italy, 2011.

11. Yang, Wanchen, Si Chen, Quan Xue, Wenquan Che, Guangxu Shen, and Wenjie Feng, "Novel filtering method based on metasurface antenna and its application for wideband high-gain filtering antenna with low profile," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1535-1544, Mar. 2019.

12. Qu, Xin, Rongxian Bai, Peng Wang, Minquan Li, Zufeng Zhang, Shuang Xiao, Chen Li, and Guocui Zhu, "A single-fed broadband circularly polarized antenna based on rotating metasurface," Progress In Electromagnetics Research C, Vol. 146, 119-126, 2024.

13. Samantaray, Diptiranjan and Somak Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, Sep. 2020.

14. Li, Wentao, Yi Ming Wang, Yongqiang Hei, Bo Li, and Xiaowei Shi, "A compact low-profile reconfigurable metasurface antenna with polarization and pattern diversities," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 7, 1170-1174, Jul. 2021.

15. Liu, Feng, Jiayin Guo, Luyu Zhao, Guan-Long Huang, Yingsong Li, and Yingzeng Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, Jan. 2020.

16. Chen, Xue and Haipeng Dou, "Compact dual-band antenna based on dual-cap metasurface," Progress In Electromagnetics Research M, Vol. 128, 11-20, 2024.

17. Wang, Kai, Wei Shao, Xiao Ding, Bing-Zhong Wang, and Baojun Jiang, "Design of high-gain metasurface antenna based on characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 661-665, Apr. 2022.

18. Lin, Feng Han and Zhi Ning Chen, "Resonant metasurface antennas with resonant apertures: Characteristic mode analysis and dual-polarized broadband low-profile design," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 6, 3512-3516, Jun. 2021.

19. Yang, Fan and Yahya Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.

20. Hussain, Niamat, Min-Joo Jeong, Anees Abbas, and Nam Kim, "Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems," IEEE Access, Vol. 8, 130293-130304, Jul. 2020.

21. Alharbi, Mohammed S., Constantine A. Balanis, and Craig R. Birtcher, "Performance enhancement of square-ring antennas exploiting surface-wave metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 1991-1995, Oct. 2019.

22. Pozar, D. M., Microwave Engineering, Publishing-House-of-Electronics-Industry, NJ, USA, 2006.

23. Costa, Filippo, Olli Luukkonen, Constantin R. Simovski, Agostino Monorchio, Sergei A. Tretyakov, and Peter M. de Maagt, "TE surface wave resonances on high-impedance surface based antennas: Analysis and modeling," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3588-3596, Oct. 2011.

24. Chen, Xudong, Tomasz M. Grzegorczyk, Bae-Ian Wu, Joe Pacheco, and Jin Au Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.

25. Holloway, Christopher L., Andrew Dienstfrey, Edward F. Kuester, John F. O’Hara, Abul K. Azad, and Antoinette J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, No. 2, 100-112, 2009.

26. Kuester, Edward F., Mohamed A. Mohamed, Melinda Piket-May, and Christopher L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2641-2651, Oct. 2003.

27. Economou, E. N., Th. Koschny, and C. M. Soukoulis, "Strong diamagnetic response in split-ring-resonator metamaterials: Numerical study and two-loop model," Physical Review B, Vol. 77, No. 9, 092401, 2008.