Vol. 132
Latest Volume
All Volumes
PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-02-08
Conception and Realization of a Wideband Directional Dual-Beam Phased MIMO Array Antenna with Hybrid Coupler for ISM Band Utilizations
By
Progress In Electromagnetics Research M, Vol. 132, 39-48, 2025
Abstract
This work addresses a wideband dual-beam 1x4 phased MIMO array antenna with a hybrid coupler for Industrial, Scientific and Medical (ISM) bands applications at 2.4-2.5 GHz. We engineered, refined, and reduced the fundamental component utilizing the novel concept of an advanced curved quarter-wave impedance adapter, achieving a 50% reduction in size relative to comparable designs documented in the literature. The fundamental component operates at 2.45 GHz, including a narrow bandwidth of 26 MHz and a maximum gain of 7.21 dB. Subsequently, a lossless magic-T power splitter is employed to feed two identical miniaturized elements resulting in a compact 1 × 2 array antenna with miniaturized size and enhanced performance. The results obtained show that the miniaturized 1 × 2 array antenna resonate at 2.45 GHz with a narrow impedance bandwidth of 52 MHz, peak gain of 9.41 dB and a peak directivity of 9.48 dB at 2.45 GHz. To broaden the narrow bandwidth and to enhance gain, directivity and radiation coverage area, a 3 dB hybrid coupler is used to feed two identical miniaturized 1 × 2 array antennas resulting a wideband directional dual-beam MIMO phased 1 × 4 array antenna. The proposed dual-beam array antenna prototype has been designed and fabricated on a substrate Rogers RT/duroid 5880 with the following parameters: relative permittivity εr = 2.2, dielectric loss tangent of 0.0009, and total size of 240 × 136 × 1.56 mm3. The simulation results are corroborated by experiments that verified the proposed dual-beam MIMO array antenna which exhibits a high gain of 11.2 dB, effective adaptation, an expanded bandwidth of 1.22 GHz, in addition to its MIMO capability and the dual beams oriented at ±30˚, achieved through switching between the two input feed ports of the hybrid coupler.
Citation
Abdelaaziz El Ansari, Shobhit Kisan Khandare, Najiba El Amrani El Idrissi, Abdelhak Bendali, Sudipta Das, Fatima Younis, Hala Kamal Abduljaleel, and Ahmed Jamal Abdullah Al-Gburi, "Conception and Realization of a Wideband Directional Dual-Beam Phased MIMO Array Antenna with Hybrid Coupler for ISM Band Utilizations," Progress In Electromagnetics Research M, Vol. 132, 39-48, 2025.
doi:10.2528/PIERM24112304
References

1. Das, Rupanita, Tanmaya K. Das, Ajay K. Yadav, Harish C. Mohanta, Abdul K. M. Zakir Hossain, and Ahmed J. A. Al-Gburi, "Analysis of inscribed hexagonal slot loaded antenna for short range RFID reader applications," Progress In Electromagnetics Research C, Vol. 150, 125-133, 2024.
doi:10.2528/PIERC24092105

2. El Arrouch, Tarik, Najiba El Amrani El Idrissi, and Abdelaaziz El Ansari, "Microstrip patch antenna using a parasitic mushroom for 5G application at 28 GHz," 2022 9th International Conference on Wireless Networks and Mobile Communications (WINCOM), 1-6, Rabat, Morocco, 2022.

3. Turalchuk, Pavel, Irina Munina, Michail Derkach, Orest Vendik, and Irina Vendik, "Electrically small loop antennas for RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1786-1789, 2015.

4. Makar, Gregory, Daniel Kim, Nghi Tran, and Tutku Karacolak, "Compact antennas with reduced self interference for simultaneous transmit and receive," Progress In Electromagnetics Research C, Vol. 78, 19-31, 2017.

5. Nawaz, Haq and Ibrahim Tekin, "Dual-polarized, differential fed microstrip patch antennas with very high interport isolation for full-duplex communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7355-7360, 2017.

6. Goodbody, C., T. Karacolak, and N. Tran, "Dual-polarised patch antenna for in-band full-duplex applications," Electronics Letters, Vol. 54, No. 22, 1255-1256, 2018.

7. Nawaz, Haq and Ibrahim Tekin, "Double-differential-fed, dual-polarized patch antenna with 90 dB interport RF isolation for a 2.4 GHz in-band full-duplex transceiver," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 287-290, 2018.

8. Bendali, A., S. Bri, A. El Fellahi, M. Habibi, and M. N. Srifi, "Printed H-antenna with parasitic element for RFID systems," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-5, Rabat, Morocco, 2018.

9. Lu, KueiJih, Tuan Nguyen, Nghi Tran, and Tutku Karacolak, "Parasitic spirals for enhancing bandwidth of a simultaneous transmit and receive patch antenna," Microsystem Technologies, Vol. 27, 3333-3338, 2021.

10. Laabadli, A., Youssef Mejdoub, Abdelkebir El Amri, and Mohamed Tarbouch, "Miniaturized metamaterial antenna for 2.45 GHz services," International Journal of Microwave and Optical Technology, Vol. 18, No. 4, 349-358, 2023.

11. Tabakh, Ikram, Mohammed Jorio, and Najiba El Amrani El Idrissi, "1 × 2 RFID reader array antenna for narrowband indoor positioning applications," Journal of Engineering Science and Technology Review, Vol. 12, No. 6, 167-172, 2019.
doi:10.25103/jestr.126.21

12. El Alami, Ali, Yousra Ghazaoui, Sudipta Das, Saad Dosse Bennani, and Mohammed El Ghzaoui, "Design and simulation of RFID array antenna 2 × 1 for detection system of objects or living things in motion," Procedia Computer Science, Vol. 151, 1010-1015, 2019.

13. Tran, Huy Hung, Niamat Hussain, and Tuan Tu Le, "Low-profile wideband circularly polarized MIMO antenna with polarization diversity for WLAN applications," AEU --- International Journal of Electronics and Communications, Vol. 108, 172-180, 2019.

14. Sim, Chow-Yen-Desmond, Vigneswaran Dhasarathan, Thien Khanh Tran, Jayshri Kulkarni, Brian A. Garner, and Yang Li, "Mutual coupling reduction in dual-band MIMO antenna using parasitic dollar-shaped structure for modern wireless communication," IEEE Access, Vol. 11, 5617-5628, 2023.

15. Weng, Zibin, Dan Yang, and Kaibin Xue, "Design of a compact microstrip decoupled array," Electronics, Vol. 12, No. 19, 4163, 2023.

16. Zhang, Enze, Andrea Michel, Marcos Rodriguez Pino, Paolo Nepa, and Jinghui Qiu, "A dual circularly polarized patch antenna with high isolation for MIMO WLAN applications," IEEE Access, Vol. 8, 117833-117840, 2020.

17. El Alami, A., S. Das, B. T. P. Madhav, and S. Dosse Bennani, "Design, optimization and realization of high gain RFID array antenna 4 × 1 for detection system of objects in motion," Journal of Instrumentation, Vol. 14, No. 05, P05002, 2019.

18. Tabakh, I., S. Das, M. Jorio, N. El Amrani El Idrissi, S. Mohapatra, and D. Barad, "Defected ground structure (DGS) incorporated RFID reader antenna array for indoor positioning systems at 2.45 GHz," International Journal of Microwave and Optical Technology, Vol. 15, No. 6, 517-524, 2020.

19. Bendali, A., A. El Fellahi, M. N. Srifi, S. Bri, and M. Habibi, "A novel adaptive array antenna for a RFID applications," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-5, Rabat, Morocco, 2018.

20. El Ansari, Abdelaaziz, Sudipta Das, Najiba El Amrani El Idrissi, Tarik El-Arrouch, and Abdelhak Bendali, "Slot incorporated high gain Printed RFID Reader Array antenna for 2.4 GHz ISM band applications," E3S Web of Conferences, Vol. 351, 01056, 2022.

21. El Ansari, Abdelaaziz, Sudipta Das, Tanvir Islam, Sivaji Asha, Najiba El Amrani El Idrissi, and Boddapati Taraka Phani Madhav, "A high-gain directional 1 × 8 planar antenna array for 2.4 GHz RFID reader applications," Journal of Circuits, Systems and Computers, Vol. 33, No. 12, 2450219, 2024.

22. Ansari, Abdelaaziz El, Sudipta Das, Ikram Tabakh, Boddapati Taraka Phani Madhav, Abdelhak Bendali, and Najiba El Amrani El Idrissi, "Design and realization of a broadband multi-beam 1 × 2 array antenna based on 2 × 2 butler matrix for 2.45 GHz RFID reader applications," Journal of Circuits, Systems and Computers, Vol. 31, No. 17, 2250305, 2022.

23. El Ansari, Abdelaaziz, Sudipta Das, Tarik El-Arrouch, and Najiba El Amrani El Idrissi, "A hybrid coupler integrated 1 × 4 printed array antenna with broadband and high performance for beamforming RFID reader," 2022 9th International Conference on Wireless Networks and Mobile Communications (WINCOM), 1-6, Rabat, Morocco, 2022.

24. Ansari, Abdelaaziz El, V. Jayaprakasan, K. Duraisamy, Sudipta Das, Tarik El-Arrouch, and Najiba El Amrani El Idrissi, "A wideband microstrip 1 × 2 array antenna fed by coupler for beam steering terahertz (THz) band applications," Journal of Nano- and Electronic Physics, Vol. 15, No. 3, 03028, 2023.

25. Abdullah Al-Gburi, Ahmed Jamal, "5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones," Przegląd Elektrotechniczny, Vol. 2024, No. 4, 171, 2024.

26. Aggarwal, Reena, Ajay Roy, and Rajeev Kumar, "A compact four port MIMO antenna for n261 millimeter wave band applications," Progress In Electromagnetics Research M, Vol. 129, 33-41, 2024.
doi:10.2528/PIERM24080201

27. Pozar, David M., Microwave Engineering, John Wiley & Sons, 2011.

28. El Ansari, Abdelaaziz, Lahcen Kabouri, and Esmail Ahouzi, "Random attack on Asymmetric Cryptosystem based on phase-truncated fourier transforms," 2014 International Conference on Next Generation Networks and Services (NGNS), 65-68, Casablanca, Morocco, 2014.