Vol. 126
Latest Volume
All Volumes
PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-03-19
An Original Approach to Determine the Minimum Operating Frequency of Mode-Stirred Reverberation Chambers
By
Progress In Electromagnetics Research Letters, Vol. 126, 1-7, 2025
Abstract
The minimum operating frequency (MOF) of mode-stirred reverberation chambers is often assessed through statistical analysis using goodness-of-fit (GoF) statistical hypothesis tests such as Anderson-Darling or Kolmogorov-Smirnov. However, in the context of MOF determination, hypothesis tests are typically used with the aim of proving the null hypothesis made on the probability distribution of the electric field in the cavity, as opposed to the initial intent of the tests. A new approach avoiding hypothesis testing is proposed in this work by introducing a criterion based on normalized statistical distances. By normalizing the distances, it has been made possible to limit the influence of the sample size on the assessed minimum frequency, thereby improving the consistency of the results.
Citation
Lionel Michard, Guillaume Andrieu, Philippe Leveque, and Delia Arnaud-Cormos, "An Original Approach to Determine the Minimum Operating Frequency of Mode-Stirred Reverberation Chambers," Progress In Electromagnetics Research Letters, Vol. 126, 1-7, 2025.
doi:10.2528/PIERL24112004
References

1. Rajamani, Vignesh, Charles Bunting, and Gus Freyer, "Why consider EMC testing in a reverberation chamber," 2008 10th International Conference on Electromagnetic Interference & Compatibility, 303-308, Bangalore, India, Nov. 2008.

2. Orlacchio, Rosa, Guillaume Andrieu, Alexandre Joushomme, Lorenza Patrignoni, Annabelle Hurtier, Florence Poulletier De Gannes, Isabelle Lagroye, Yann Percherancier, Delia Arnaud-Cormos, and Philippe Leveque, "A novel reverberation chamber for in vitro bioelectromagnetic experiments at 3.5 GHz," IEEE Transactions on Electromagnetic Compatibility, Vol. 65, No. 1, 39-50, Feb. 2023.
doi:10.1109/TEMC.2022.3216045

3. Paolanti, Marina, Rama Pollini, Emanuele Frontoni, Adriano Mancini, Roberto De Leo, Primo Zingaretti, and Bruno Bisceglia, "Exposure protocol setup for agro food treatment. Method and system for developing an application for heating in reverberation chamber," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), 1-4, Lecce, Italy, Nov. 2015.
doi:10.1109/MMS.2015.7375372

4. Chen, Xiaoming, "Model selection for investigation of the field distribution in a reverberation chamber," Progress In Electromagnetics Research M, Vol. 28, 169-183, 2013.
doi:10.2528/PIERM12122106

5. Andrieu, Guillaume, Nicolas Ticaud, Frédéric Lescoat, and Laurent Trougnou, "Fast and accurate assessment of the ``well stirred condition'' of a reverberation chamber from S11 measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 4, 974-982, Aug. 2019.
doi:10.1109/TEMC.2018.2847727

6. Fall, Abdou Khadir, Philippe Besnier, Christophe Lemoine, Maxim Zhadobov, and Ronan Sauleau, "Design and experimental validation of a mode-stirred reverberation chamber at millimeter waves," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 1, 12-21, Feb. 2015.
doi:10.1109/TEMC.2014.2356712

7. Lemoine, Christophe, Philippe Besnier, and M'hamed Drissi, "Investigation of reverberation chamber measurements through high-power goodness-of-fit tests," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 4, 745-755, Nov. 2007.
doi:10.1109/TEMC.2007.908290

8. Primiani, Valter Mariani and Franco Moglie, "Numerical simulation of reverberation chamber parameters affecting the received power statistics," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 522-532, Jun. 2012.
doi:10.1109/TEMC.2011.2167337

9. Xu, Qian, Lei Xing, Yongjiu Zhao, Tianyuan Jia, and Yi Huang, "A source stirred reverberation chamber using a robotic arm," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 631-634, Apr. 2020.
doi:10.1109/TEMC.2019.2912999

10. He, Yuhui and Andrew C. Marvin, "Aspects of field statistics inside nested frequency-stirred reverberation chambers," 2009 IEEE International Symposium on Electromagnetic Compatibility, 171-176, Austin, TX, USA, Aug. 2009.
doi:10.1109/ISEMC.2009.5284658

11. Monsef, Florian and Andrea Cozza, "Goodness-of-fit tests in radiated susceptibility tests," 2012 ESA Workshop on Aerospace EMC, 1-5, Venice, Italy, 2012.

12. Markatou, Marianthi, Dimitrios Karlis, and Yuxin Ding, "Distance-based statistical inference," Annual Review of Statistics and Its Application, Vol. 8, No. 1, 301-327, Mar. 2021.
doi:10.1146/annurev-statistics-031219-041228

13. Hill, David A., "Plane wave integral representation for fields in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 209-217, Aug. 1998.
doi:10.1109/15.709418

14. Andrieu, Guillaume, Electromagnetic Reverberation Chambers: Recent Advances and Innovative Applications, Guillaume Andrieu, SciTech Publishing, The Institution of Engineering and Technology, 2021.

15. Démoulin, Bernard and Philippe Besnier, Les Chambres Réverbérantes en Electromagnétisme, Hermes Lavoisier, 2010.

16. Lemoine, Christophe, Emmanuel Amador, and Philippe Besnier, "On the K-factor estimation for rician channel simulated in reverberation chamber," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 1003-1012, Mar. 2011.
doi:10.1109/TAP.2010.2103003

17. Hill, D. A., "Boundary fields in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 2, 281-290, May 2005.
doi:10.1109/TEMC.2005.847370

18. Monsef, Florian, Ramiro Serra, and Andrea Cozza, "Goodness-of-fit tests in reverberation chambers: Is sample independence necessary?," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 6, 1748-1751, Dec. 2015.
doi:10.1109/TEMC.2015.2451211

19. Laio, Francesco, "Cramer-von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters," Water Resources Research, Vol. 40, No. 9, 2004.
doi:10.1029/2004WR003204

20. Dedecker, Jérôme and Florence Merlevède, "Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences," Bernoulli, Vol. 23, No. 3, 2083-2127, Aug. 2017.
doi:10.3150/16-BEJ805

21. Sachs, L., Applied Statistics, Springer Series in Statistics, Springer, New York, NY, 1984.
doi:10.1007/978-1-4612-5246-7

22. Monsef, Florian and Andrea Cozza, "A possible minimum relevance requirement for a statistical approach in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 6, 1728-1731, Dec. 2015.
doi:10.1109/TEMC.2015.2464318

23. Nyquist, Harry, "Thermal agitation of electric charge in conductors," Physical Review, Vol. 32, No. 1, 110, Jul. 1928.
doi:10.1103/PhysRev.32.110

24. Zhai, Shouyang, Xiang Zhou, Peng Hu, Yan Chen, Dan Chen, Zhongyuan Zhou, and Mingjie Sheng, "Alternative method for the determination of the ideal electromagnetic reverberant frequency with frequency stirring technique," IEICE Electronics Express, Vol. 18, No. 6, 20210069, 2021.
doi:10.1587/elex.18.20210069

25. Stephens, Michael A., "EDF statistics for goodness of fit and some comparisons," Journal of the American Statistical Association, Vol. 69, No. 347, 730-737, 1974.
doi:10.2307/2286009

26. Yousaf, J., M. Ghazal, H. Lee, M. Faisal, J. G. Yang, and W. Nah, "Efficient assessment of well-stirred operation of reverberation chamber using coupling transfer gain functions," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 3, 315-335, Feb. 2021.
doi:10.1080/09205071.2020.1837682

27. Anevski, D., "Riemann-Stieltjes integrals," Lecture Notes, Lund University, Sweden, 2012.