submit Submit login
Vol. 124
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-01-18
Enhanced MIMO-OFDM Radar Waveform Designs for Exact Antenna Parameter
By
Progress In Electromagnetics Research Letters, Vol. 124, 47-53, 2025
Abstract
This work is focused on predicting the return loss and gain characteristics, where a new MIMO-OFDM radar waveform design is proposed and then simulated for a line impedance antenna system. A suggested radar waveform is implemented on an FR4 substrate normally used in microwave applications. It is obtained that, after extensive modeling, the return loss for the MIMO-OFDM radar waveform is -31.7265 dB at a frequency of 6.86 GHz, thereby showing minimum reflection and good impedance matching. At this frequency, the gain for the system comes out to be 7.1276 dB, which refers to the fact that this waveform would help in enhancing the performance of radar systems. These results demonstrate how the MIMO-OFDM radar waveform can be used for advanced radar applications because it gives better return loss and gain, some of the critical specifications required for high-performance radar systems.
Citation
Alphonse Mary Joy Kinol, Devaerakkam Marshiana, Narasu Raghavan Krishnamoorthy, and Ramanathan Pandian, "Enhanced MIMO-OFDM Radar Waveform Designs for Exact Antenna Parameter," Progress In Electromagnetics Research Letters, Vol. 124, 47-53, 2025.
doi:10.2528/PIERL24091301
References

1. Alqahtani, Yahya, Umakant Mandawkar, Aditi Sharma, Mohammad Najmus Saquib Hasan, Mrunalini Harish Kulkarni, and R. Sugumar, "Breast cancer pathological image classification based on the multiscale CNN squeeze model," Computational Intelligence and Neuroscience, Vol. 2022, No. 1, 7075408, Aug. 2022.

2. Bierbrier, Rachel, Vivian Lo, and Robert C. Wu, "Evaluation of the accuracy of smartphone medical calculation apps," Journal of Medical Internet Research, Vol. 16, No. 2, e32, 2014.

3. Endo, Koji, Kohei Yamamoto, and Tomoaki Ohtsuki, "A denoising method using deep image prior to human-target detection using MIMO FMCW radar," Sensors, Vol. 22, No. 23, 9401, 2022.
doi:10.3390/s22239401

4. Geetha, B. T., Prakash Mohan, A. V. R. Mayuri, T. Jackulin, J. L. Aldo Stalin, and Varagantham Anitha, "Pigeon inspired optimization with encryption based secure medical image management system," Computational Intelligence and Neuroscience, Vol. 2022, No. 1, 2243827, Aug. 2022.

5. George, Darren and Paul Mallery, IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference, 16th Ed., 402, Routledge, New York, 2019.
doi:10.4324/9780429056765

6. Heath Jr., R. W. and Angel Lozano, Foundations of MIMO Communication, Cambridge University Press, UK, 2018.
doi:10.1017/9781139049276

7. Kaiser, Thomas, Smart Antennas: State of the Art, Hindawi Publishing Corporation, N.Y., USA, 2005.
doi:10.1155/9789775945099

8. Kamal, Mustafa, A. Raghuvira Pratap, Mohd Naved, Abu Sarwar Zamani, P. Nancy, Mahyudin Ritonga, Surendra Kumar Shukla, and F. Sammy, "Machine learning and image processing enabled evolutionary framework for brain MRI analysis for Alzheimer’s disease detection," Computational Intelligence and Neuroscience, Vol. 2022, No. 1, 5261942, Mar. 2022.

9. Lee, Byeong Gi and Sunghyun Choi, Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi, Artech House, Boston, USA, 2008.

10. Liu, Yang, Na Dong, Xiaohui Zhang, Xin Zhao, Yinghui Zhang, and Tianshuang Qiu, "DOA estimation for massive MIMO systems with unknown mutual coupling based on block sparse Bayesian learning," Sensors, Vol. 22, No. 22, 8634, 2022.
doi:10.3390/s22228634

11. Marin, Juan M., Islam Ashry, Omar Alkhazragi, Abderrahmen Trichili, Tien Khee Ng, and Boon S. Ooi, "Simultaneous distributed acoustic sensing and communication over a two-mode fiber," Optics Letters, Vol. 47, No. 24, 6321-6324, 2022.

12. Mousavi, Vahid, Masood Varshosaz, Fabio Remondino, Saied Pirasteh, and Jonathan Li, "A two-step descriptor-based keypoint filtering algorithm for robust image matching," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 1-21, 2022.
doi:10.1109/TGRS.2022.3188931

13. Mumtaz, Shahid, Jonathan Rodriguez, and Linglong Dai, mmWave Massive MIMO: A Paradigm for 5G, 1st Ed., Academic Press, FL, USA, 2016.

14. Rohling, Hermann, OFDM: Concepts for Future Communication Systems, Springer, Berlin, 2013.

15. Saravanan, M., J. Jayanthi, U. Sakthi, R. Rajkumar, Gyanendra Prasad Joshi, L. Minh Dang, and Hyeonjoon Moon, "Intelligent satin bowerbird optimizer based compression technique for remote sensing images," Computers, Materials & Continua, Vol. 72, No. 2, 2022.
doi:10.32604/cmc.2022.025642

16. Sibille, Alain, Claude Oestges, and Alberto Zanella, MIMO: From Theory to Implementation, Academic Press, USA, 2010.

17. Swaminathan, B., Siddhartha Choubey, N. K. Anushkannan, Jeevanantham Arumugam, K. Suriyakrishnaan, Hesham S. Almoallim, Sulaiman Ali Alharbi, S. R. Soma, and Ramata Mosissa, "IOTEML: An Internet of Things (IoT)-based enhanced machine learning model for tumour investigation," Computational Intelligence and Neuroscience, Vol. 2022, No. 1, 1391340, Sep. 2022.

18. Rajendran, T., Prajoona Valsalan, J. Amutharaj, M. Jenifer, S. Rinesh, T. Anitha, et al., "Hyperspectral image classification model using squeeze and excitation network with deep learning," Computational Intelligence and Neuroscience, Vol. 2022, 9430779, Aug. 2022.

19. Vasanthkumar, P., A. R. Revathi, G. Ramya Devi, R. J. Kavitha, A. Muniappan, and C. Karthikeyan, "Improved wild horse optimizer with deep learning enabled battery management system for internet of things based hybrid electric vehicles," Sustainable Energy Technologies and Assessments, Vol. 52, 102281, 2022.

20. Wongchai, Anupong, Surendra Kumar Shukla, Mohammed Altaf Ahmed, Ulaganathan Sakthi, Mukta Jagdish, and Ravi kumar, "Artificial intelligence-enabled soft sensor and internet of things for sustainable agriculture using ensemble deep learning architecture," Computers and Electrical Engineering, Vol. 102, 108128, 2022.

21. Wu, Kai, J. Andrew Zhang, Xiaojing Huang, and Y. Jay Guo, "Removing false targets for cyclic prefixed OFDM sensing with extended ranging," Sensors, Vol. 22, No. 22, 9015, 2022.
doi:10.3390/s22229015

22. Zhang, Pinchang, Yangyang Liu, and Ji He, "Utilizing multi-dimensional mmWave MIMO channel features for location verification," Sensors, Vol. 22, No. 23, 9202, 2022.
doi:10.3390/s22239202

23. Zhang, Zeyuan, Xianbing Zou, Qun Li, and Ning Wei, "Towards 100 Gbps over 100 km: System design and demonstration of E-band millimeter wave communication," Sensors, Vol. 22, No. 23, 9514, 2022.
doi:10.3390/s22239514

24. Zhao, Feng, Xiongwei Yang, Li Zhao, Yi Wei, and Jianjun Yu, "Demonstration of 4096QAM THz MIMO wireless delivery employing one-bit delta-sigma modulation," Optics Letters, Vol. 47, No. 24, 6361-6364, 2022.

25. Lipfert, Hermann, MIMO OFDM space time coding --- Spatial multiplexing, increasing performance and spectral efficiency in wireless systems, Part I, technical basis (Technical Report). Institut für Rundfunktechnik, Aug. 2007.

26. Pawase, Trupti N., Anurag Mahajan, and Akshay Malhotra, "Strip-radiator and reflector based multi-layered CPW-fed antenna for tracking application," Progress In Electromagnetics Research C, Vol. 146, 163-175, 2024.
doi:10.2528/PIERC24061305

27. Ren, Wanying, Zhonggen Wang, Wenyan Nie, Weidong Mu, Chenlu Li, Mingqing Wang, and Wenshi You, "A 12-unit asymmetric mirror-coupled loop antenna for 5G smartphones," Progress In Electromagnetics Research C, Vol. 145, 141-152, 2024.
doi:10.2528/PIERC24061402

28. Narayana, Madhavareddy Venkata, Govardhani Immadi, Ambati Navya, Maringanti Venkata Swathi, Muralidharan Nikhitha, Bhavanam Vineetha, and Gottapu Chinmai Anantha Shanmukha Swaroop, "Analysis of a quad port dual band MIMO antenna for sub-6 GHz applications," Progress In Electromagnetics Research B, Vol. 105, 137-151, 2024.
doi:10.2528/PIERB24021504