Vol. 132
Latest Volume
All Volumes
PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-01-27
A Low-Profile EBG Based Corrugated 5G Antenna Design for WLAN Communication
By
Progress In Electromagnetics Research M, Vol. 132, 11-19, 2025
Abstract
The paper introduces a corrugated antenna structure suitable for 5G WLAN application and operates at a frequency of 5.52 GHz. Further, a periodic structure made up of square unit cells is combined with the antenna design, and improvement in gain and impedance bandwidth is observed. The antenna gain without periodic structure is 3.48 dB whereas with periodic structure it is noted as 4.09 dB. The antenna dimensions are 16 mm × 16 mm × 3 mm. Also, the measured bandwidth of the antenna structure without periodic structure is observed to be 210 MHz, and that with periodic structure is 310 MHz.
Citation
Hema Raut, Saffrine Kingsly, Sangeetha Subbaraj, and Rajeshwari Malekar, "A Low-Profile EBG Based Corrugated 5G Antenna Design for WLAN Communication," Progress In Electromagnetics Research M, Vol. 132, 11-19, 2025.
doi:10.2528/PIERM24090903
References

1. Kumar, Sumit, Amruta S. Dixit, Rajeshwari R. Malekar, Hema D. Raut, and Laxmikant K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020.

2. Hong, Wei, Zhi Hao Jiang, Chao Yu, Jianyi Zhou, Peng Chen, Zhiqiang Yu, Hui Zhang, Binqi Yang, Xingdong Pang, Mei Jiang, et al. "Multibeam antenna technologies for 5G wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6231-6249, 2017.

3. Pang, Wai Leong, Gwo Chin Chung, Kah Yoong Chan, Mardeni Roslee, and Arvindraj Ravi Chandran, "Performance evaluation of 5G in sub-6GHz," International Journal of Intelligent Systems and Applications in Engineering, Vol. 11, No. 8S, 476-481, 2023.

4. Dzagbletey, Philip Ayiku and Young-Bae Jung, "Stacked microstrip linear array for millimeter-wave 5G baseband communication," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 780-783, 2018.

5. Zhu, Qian, Kung Bo Ng, Chi Hou Chan, and Kwai-Man Luk, "Substrate-integrated-waveguide-fed array antenna covering 57-71 GHz band for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6298-6306, 2017.

6. An, Wenxing, Yue Li, Haipeng Fu, Jianguo Ma, Weigang Chen, and Botao Feng, "Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 621-624, 2018.

7. Ta, Son Xuat and Ikmo Park, "Compact wideband circularly polarized patch antenna array using metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1932-1936, 2017.

8. Sun, Shulin, Qiong He, Jiaming Hao, Shiyi Xiao, and Lei Zhou, "Electromagnetic metasurfaces: Physics and applications," Advances in Optics and Photonics, Vol. 11, No. 2, 380-479, 2019.

9. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.

10. Krzysztofik, W. J. and T. N. Cao, "Metamaterials in application to improve antenna parameters," Metamaterials and Metasurfaces, Vol. 12, No. 2, 63-85, 2018.

11. Vallecchi, A., F. Capolino, and A. G. Schuchinsky, "2-D isotropic effective negative refractive index metamaterial in planar technology," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 269-271, 2009.

12. Tilak, G., Sarat K. Kotamraju, Boddapati T. P. Madhav, K. Kavya, and M. Venkateswara Rao, "Dual sensed high gain heart shaped monopole antenna with planar artificial magnetic conductor," Journal of Engineering Science and Technology, Vol. 15, No. 3, 1952-1971, 2020.

13. Liu, Qingchong, Hui Liu, Wang He, and Sailing He, "A low-profile dual-band dual-polarized antenna with an AMC reflector for 5G communications," IEEE Access, Vol. 8, 24072-24080, 2020.

14. Hu, Tengfei, Zhenni Pan, Megumi Saitou, Jiang Liu, and Shigeru Shimamoto, "A triple-band antenna loaded with reflector surface for WLAN and 5G applications," Journal of Communications, Vol. 15, No. 10, 729-734, 2020.
doi:10.12720/jcm.15.10.729-734

15. Azemi, Saidatul Norlyana, Farzana Hazira Wan Mustaffa, Mohd Faizal Jamlos, Azremi Abdullah Al-Hadi, and Ping Jack Soh, "Frequency selective surface for structural health monitoring," IOP Conference Series: Materials Science and Engineering, Vol. 318, No. 1, 012033, 2018.

16. Kakhki, Mehri Borhani, Mohamad Mantash, Arun Kesavan, Muhammad M. Tahseen, and Tayeb Ahmed Denidni, "Millimeter-wave beam-tilting Vivaldi antenna with gain enhancement using multilayer FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2279-2283, 2018.

17. Nakmouche, Mohammed Farouk, A. Allam, D. E. Fawzy, and D.-B. Lin, "Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.

18. Miranda, Igor Ramon Sinimbú, Fiterlinge Martins de Sousa, Fabio Barros de Sousa, Jorge Everaldo de Oliveira, and Marcos Benedito Caldas Costa, "Microstrip patch antenna with BiNbO4(V2O5) substrate and copper periodic structures," Materials Research, Vol. 24, e20200487, 2021.

19. Tan, Xiaohua, Weimin Wang, Yongle Wu, Yuanan Liu, and Ahmed A. Kishk, "Enhancing isolation in dual-band meander-line multiple antenna by employing split EBG structure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2769-2774, 2019.

20. Raut, Hema, Saffrine Kingsly, Sangeetha Subbaraj, and Rajeshwari Malekar, "EBG-based slotted T-shaped antenna for sub-6 GHz 5G application," International Journal of Electronics Letters, Vol. 12, No. 4, 375-387, 2024.

21. Sharma, Kanhaiya and Ganga Prasad Pandey, "Two port compact MIMO antenna for ISM band applications," Progress In Electromagnetics Research C, Vol. 100, 173-185, 2020.

22. Wang, Chao, Xue-Song Yang, and Bing-Zhong Wang, "A metamaterial‐based compact broadband planar monopole MIMO antenna with high isolation," Microwave and Optical Technology Letters, Vol. 62, No. 9, 2965-2970, 2020.

23. Krishnananda, K. and T. S. Rukmini, "EBG antennas: Their design and performance analysis for wireless applications," International Journal of Computer Applications, Vol. 48, No. 23, 20-27, 2012.
doi:10.5120/7520-0437

24. Evercom, “5.0 GHz antenna,” [Online] Available: https://www. evercomtech.com/ 5-0ghz-antenna.

25. Qian, Yongxi, Roberto Coccioli, Dan Sievenpiper, Vesna Radisic, Eli Yablonovitch, and Tatsuo Itoh, "A microstrip patch antenna using novel photonic band-gap structures," Microwave Journal, Vol. 42, No. 1, 66-72, 1999.

26. Yang, Fan and Y. Rahmat-Samii, "Applications of electromagnetic band-gap (EBG) structures in microwave antenna designs," 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002., 528-531, Beijing, China, Aug. 2002.