Vol. 123
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-10-25
Design of X-Band Vertical Non-Standard Coaxial-Waveguide Converter
By
Progress In Electromagnetics Research Letters, Vol. 123, 41-46, 2025
Abstract
A non-standard rectangular waveguide-to-coaxial converter designed for the X-band (9.3-9.5 GHz) is presented. This converter builds upon traditional coaxial probe coupling and stepped contact feeds by integrating a Chebyshev impedance transformer and stepped impedance matching technique. The proposed improved converter features a coupling probe combined with a stepped contact, enabling a vertical feed configuration from the bottom. This design offers an effective option for optimizing array antenna layouts. Simulation results indicate that within the operational frequency range, the rectangular waveguide-to-coaxial converter achieves |S11| less than -27 dB and |S21| greater than -0.04 dB. Practical measurements for non-standard rectangular waveguides show a VSWR below 1.1 across the working frequency band.
Citation
Bo Yan, Zibin Weng, Dalei Yuan, and Youqian Su, "Design of X-Band Vertical Non-Standard Coaxial-Waveguide Converter," Progress In Electromagnetics Research Letters, Vol. 123, 41-46, 2025.
doi:10.2528/PIERL24090303
References

1. Bharath, Kunooru, Srujana Vahini Nandigama, Dasari Ramakrishna, and Vijay M. Pandharipande, "High performance millimeter wave SIW slotted array antenna," Progress In Electromagnetics Research C, Vol. 125, 15-23, 2022.

2. Masouleh, Mahmoud Sharafi, Amin Kargar Behbahami, Masoud Sharafi Masouleh, Maryam Sajedi, and Malek Adjouadi, "Pattern synthesis of a resonant slot on a broad wall of the rectangular waveguide using amplitude and phase control," Progress In Electromagnetics Research C, Vol. 129, 51-61, 2023.

3. Yu, Wei, Lei Sun, Long Li, and Hongbing Sun, "Dual-band dual-polarized slotted coaxial waveguide antenna," Progress In Electromagnetics Research C, Vol. 120, 135-144, 2022.

4. Simion, Stefan, "A new unterminating method for de-embedding the coaxial to waveguide transitions," Progress In Electromagnetics Research C, Vol. 121, 255-264, 2022.

5. Haider, Iqram, Ananjan Basu, and Shiban Kishen Koul, "A compact wideband waveguide filtering antenna with transmission zero," Progress In Electromagnetics Research Letters, Vol. 119, 59-65, 2024.

6. Nesterenko, Mikhail, Viktor A. Katrich, Svetlana V. Pshenichnaya, and Victor I. Kijko, "Scattering of electromagnetic waves by a multi-element system of pass-through resonators in a rectangular waveguide," Progress In Electromagnetics Research C, Vol. 131, 135-143, 2023.

7. Tribak, Abdelwahed, Jamal Zbitou, Angel Mediavilla Sanchez, and Naima Amar Touhami, "Ultra-broadband high efficiency mode converter," Progress In Electromagnetics Research C, Vol. 36, 145-158, 2013.

8. Komarov, Vyacheslav V., Alexey I. Korchagin, and Valeriy P. Meschanov, "Broad-band coaxial-to-waveguide transition," 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE), 163-165, Saratov, Russia, 2020.

9. Dansran, Bayarsaikhan, Songyuan Xu, Jiwon Heo, Chan-Soo Lee, and Bierng-Chearl Ahn, "Design of a broadband transition from a coaxial cable to a reduced-height rectangular waveguide," Applied Sciences, Vol. 13, No. 20, 11265, 2023.

10. Zhang, Qiongyue, Songyuan Xu, Jiwon Heo, Erdenesukh Altanzaya, Galsan-Yondon Ariunbold, Delger Otgonbat, Chan-Soo Lee, Bierng-Chearl Ahn, Shu Li, and Seong-Gon Choi, "Computational design of a broadband in-line coaxial-to-rectangular waveguide transition," Applied Sciences, Vol. 14, No. 1, 74, 2024.

11. Huang, Y. Q. and C. A. Liu, "Waveguide-coaxial converter based on single-ridge waveguide impedance transformation in Ka band," 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME), 78-81, Suzhou, China, 2020.

12. Simone, Marco, Alessandro Fanti, Matteo Bruno Lodi, Tonino Pisanu, and Giuseppe Mazzarella, "An in-line coaxial-to-waveguide transition for Q-band single-feed-per-beam antenna systems," Applied Sciences, Vol. 11, No. 6, 2524, 2021.

13. Rossi, Riccardo and Roberto Vincenti Gatti, "X-band in-line coaxial-to-groove gap waveguide transition," Electronics, Vol. 11, No. 15, 2361, 2022.

14. Young, Leo, "Stepped-impedance transformers and filter prototypes," IRE Transactions on Microwave Theory and Techniques, Vol. 10, No. 5, 339-359, Sep. 1962.

15. Young, Leo, "Tables for cascaded homogeneous quarter-wave transformers," IRE Transactions on Microwave Theory and Techniques, Vol. 7, No. 2, 233-237, Apr. 1959.

16. Cohn, Seymour B., "Optimum design of stepped transmission-line transformers," IRE Transactions on Microwave Theory and Techniques, Vol. 3, No. 3, 16-20, Apr. 1955.