Vol. 130
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-10-22
Compact 8-Port MIMO Antenna for Hot-Spot Applications Based on Embedded Double-Negative Metamaterial Split Ring Resonators
By
Progress In Electromagnetics Research M, Vol. 130, 11-17, 2024
Abstract
This article proposes an 8-port MIMO antenna based on double-negative metamaterial Split Ring Resonators (SRRs) for three-dimensional (3D) non-planar applications, such as hotspots. The antenna features eight radiators arranged orthogonally to each other, placed in two perpendicular planes, operating at 3.5 GHz. Each resonator incorporates six embedded SRRs to enhance the metamaterial behavior, achieving a 40% size reduction compared to a conventional disc monopole at the same frequency. Simulated and measured results demonstrate excellent performance for MIMO applications, with Envelope Correlation Coefficient (ECC) values below 0.001 and Diversity Gain (DG) around 20 dB. The Total Active Reflection Coefficient (TARC) bandwidth is approximately 930 MHz at the -10 dB threshold. The S-parameters indicate excellent electromagnetic isolation between radiators exceeding 20 dB, and a very low cross-polarization level below -30 dB. However, the main limitation of this design is a reduction in gain, an expected result.
Citation
José Alfredo Tirado-Méndez, Arturo Rangel-Merino, and Luis Alberto Vasquez-Toledo, "Compact 8-Port MIMO Antenna for Hot-Spot Applications Based on Embedded Double-Negative Metamaterial Split Ring Resonators," Progress In Electromagnetics Research M, Vol. 130, 11-17, 2024.
doi:10.2528/PIERM24082704
References

1. Tirado-Méndez, Jose Alfredo, Hildeberto Jardón-Aguilar, Flavio Iturbide-Sánchez, Israel Garcia-Ruiz, Victoria Molina-Lopez, and Rene Acevo-Herrera, "A proposed defected microstrip structure (DMS) behavior for reducing rectangular patch antenna size," Microwave and Optical Technology Letters, Vol. 43, No. 6, 481-484, 2020.
doi:10.1002/mop.20508

2. Li, Wanqing, Du Li, Kaixiang Zhou, Qixiang Fu, Xuelin Yuan, and Xiangwei Zhu, "A survey of antenna miniaturization technology based on the new mechanism of acoustic excitation," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 263-274, 2023.

3. Jardon-Aguilar, H., Jose Alfredo Tirado-Mendez, R. Flores-Leal, and R. Linares-Miranda, "Reduced log-periodic dipole antenna using a cylindrical-hat cover," IET Microwaves, Antennas & Propagation, Vol. 5, No. 14, 1697-1702, 2011.

4. Tirado-Mendez, J. A., D. Martinez-Lara, H. Jardon-Aguilar, R. Flores-Leal, and E. A. Andrade-Gonzalez, "Inscribed fibonacci circle fractal in a circular radiator for ultra-wideband antenna operation and size reduction," International Journal of Antennas and Propagation, Vol. 2019, No. 1, 6393401, 2019.

5. Li, Mingjian, Kwai-Man Luk, Lei Ge, and Kuang Zhang, "Miniaturization of magnetoelectric dipole antenna by using metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4914-4918, 2016.

6. Al-Saif, Haitham, Muhammad Usman, Muhammad Tajammal Chughtai, and Jamal Nasir, "Compact ultra‐wide band MIMO antenna system for lower 5G bands," Wireless Communications and Mobile Computing, Vol. 2018, No. 1, 2396873, 2018.

7. Wang, Ping, Jie Liu, Guilan Huang, Qi Wu, Chao Zhou, and Wensong Wang, "Wideband gain enhancement of high-isolation and quasi-omnidirectional metamaterial MIMO antenna for vehicular radar," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-12, 2022.

8. Shi, Hongyu, Xiaoke Zhang, Jianxing Li, Peiyuan Jia, Juan Chen, and Anxue Zhang, "3.6-GHz eight-antenna MIMO array for mobile terminal applications," AEU - International Journal of Electronics and Communications, Vol. 95, 342-348, 2018.

9. Parchin, Naser Ojaroudi, Haleh Jahanbakhsh Basherlou, Yasir I. A. Al-Yasir, and Raed A. Abd-Alhameed, "A broadband multiple-input multiple-output loop antenna array for 5G cellular communications," AEU - International Journal of Electronics and Communications, Vol. 127, 153476, 2020.

10. Mohanty, Asutosh and Bikash Ranjan Behera, "Design and analysis of compact 8-port dual-element MIMO antenna for wireless applications utilizing classical electromagnetic CMA approach," AEU - International Journal of Electronics and Communications, Vol. 145, 154077, 2022.

11. Chen, Wen-Shan, Bang-Yun Lin, Hong-Twu Chen, and Yung-Tao Liu, "Eight-port MIMO slot antennas for 5G C-band applications," 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), 488-489, Incheon, Korea, 2019.

12. Chen, Zhuoni, Jianlin Huang, Guiting Dong, and Gui Liu, "Dual-band 8-port 5G MIMO antenna," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Nanjing, China, 2021.

13. Jayant, Shailesh, Garima Srivastava, and Manju Khari, "8-port MIMO antenna having two notched bands for chipless UWB-RFID tags," IEEE Journal of Radio Frequency Identification, Vol. 6, 355-360, 2022.

14. Shabbir, Tayyab, Rashid Saleem, Samir Salem Al-Bawri, Muhammad Farhan Shafique, and Mohammad Tariqul Islam, "Eight-port metamaterial loaded UWB-MIMO antenna system for 3D system-in-package applications," IEEE Access, Vol. 8, 106982-106992, 2020.

15. Huang, Jianlin, Tao He, Shuqi Xi, Qichao Yang, Xiaojin Shi, and Gui Liu, "Eight-port high-isolation antenna array for 3.3-6 GHz handset applications," AEU - International Journal of Electronics and Communications, Vol. 154, 154333, 2022.

16. Kannappan, Lekha, Sandeep Kumar Palaniswamy, Malathi Kanagasabai, Sachin Kumar, Rama T. Rao, and Thennarasi Govindan, "Sub-6 GHz eight-port 3-D vehicular antenna," 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 293-296, Chennai, India, 2022.

17. Jimenez-Guzman, Gabriel Angel, Jose Alfredo Tirado-Mendez, and Raul Pena-Rivero, "Small size antenna based on metamaterial split-ring resonators," Microwave and Optical Technology Letters, Vol. 55, No. 10, 2345-2350, 2013.

18. Chen, Xudong, Tomasz M. Grzegorczyk, Bae-Ian Wu, Joe Pacheco, Jr., and Jin Au Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.

19. Fritz-Andrade, Erik, Hildeberto Jardon-Aguilar, and Jose A. Tirado-Mendez, "The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, e22113, 2020.