Vol. 130
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-11-27
The 6G Reconfigurable Reflectarray Antenna Using a Gold-VO_2 Bilayer Structure
By
Progress In Electromagnetics Research M, Vol. 130, 63-70, 2024
Abstract
A reconfigurable reflectarray antenna (RRA) is proposed with beam steering capability at 1.1 THz. The element of reflectarray is composed of vanadium dioxide (VO-2) and a gold bilayer model designed on a unit cell of 0.45λ, in which temperature variations produce different reflection phases due to the dependence of VO-2 on ambient conditions. The proposed reflectarray antenna has an aperture of 3100 μm and when particular cells of the array are exposed to temperature over 340K, it causes the phase in those unit cells to alter, eventually acting as 1-bit RRA. The radiation pattern shows a maximum gain of 24.3 dBi and a sidelobe level of -14.4 dB with an aperture efficiency of 21.7%. The maximum gain in case of offset is over 21 dBi with side lobe levels less than -10 dB up to 80-degree beam steering range. The proposed reconfigurable reflectarray antenna shows a beam steering capability of up to 100 degrees, which is sufficient for indoor communications. The designed antenna with its performance is optimum for the development of 6G RIS-based communication systems.
Citation
Suhail Asghar Qureshi, Muhammad Ramlee Kamarudin, Muhammad Inam Abbasi, Yoshihide Yamada, Muhammad Hashim Dahri, Zuhairiah Zainal Abidin, and Nordin Ramli, "The 6G Reconfigurable Reflectarray Antenna Using a Gold-VO_2 Bilayer Structure," Progress In Electromagnetics Research M, Vol. 130, 63-70, 2024.
doi:10.2528/PIERM24073002
References

1. Yang, Fengyuan, Prakash Pitchappa, and Nan Wang, "Terahertz reconfigurable intelligent surfaces (RISs) for 6G communication links," Micromachines, Vol. 13, No. 2, 285, Feb. 2022.

2. Wang, Jue, Mira Naftaly, and Edward Wasige, "An overview of terahertz imaging with resonant tunneling diodes," Applied Sciences, Vol. 12, No. 8, 3822, Apr. 2022.

3. Niu, Tiaoming, Withawat Withayachumnankul, Benjamin S.-Y. Ung, Hakan Menekse, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux, "Experimental demonstration of reflectarray antennas at terahertz frequencies," Optics Express, Vol. 21, No. 3, 2875-2889, 2013.

4. Miao, Zhuo-Wei, Zhang-Cheng Hao, Yi Wang, Biao-Bing Jin, Jing-Bo Wu, and Wei Hong, "A 400-GHz high-gain quartz-based single layered folded reflectarray antenna for terahertz applications," IEEE Transactions on Terahertz Science and Technology, Vol. 9, No. 1, 78-88, Jan. 2019.

5. Zainud-Deen, Saber H., Ahmed M. Mabrouk, and Hend A. Malhat, "Frequency tunable graphene metamaterial reflectarray for terahertz applications," The Journal of Engineering, Vol. 2018, No. 9, 753-761, 2018.

6. Tayebi, Amin, Junyan Tang, Pavel Roy Paladhi, Lalita Udpa, Satish S. Udpa, and Edward J. Rothwell, "Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4534-4539, 2015.

7. Xi, Bin, Yu Xiao, Kaiqiang Zhu, Youwei Liu, Houjun Sun, and Zengping Chen, "1-bit wideband reconfigurable reflectarray design in Ku-band," IEEE Access, Vol. 10, 4340-4348, 2021.

8. Mei, Peng, Shuai Zhang, and Gert Frølund Pedersen, "A low-cost, high-efficiency and full-metal reflectarray antenna with mechanically 2-D beam-steerable capabilities for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6997-7006, 2020.

9. Abbasi, Muhammad Inam, Muhammad Yusof Ismail, and Muhammad Ramlee Kamarudin, "Development of a pin diode-based beam-switching single-layer reflectarray antenna," International Journal of Antennas and Propagation, Vol. 2020, No. 1, 8891759, 2020.

10. Li, Xiaoyu, Yinglu Wan, Juan Liu, Di Jiang, Tianming Bai, Kai Zhu, Jie Zhuang, and Wen-Qin Wang, "Broadband electronically scanned reflectarray antenna with liquid crystals," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 396-400, 2021.

11. Baladi, Elham, Min Yin Xu, Nicolas Faria, Jeff Nicholls, and Sean Victor Hum, "Dual-band circularly polarized fully reconfigurable reflectarray antenna for satellite applications in the Ku-band," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8387-8396, 2021.

12. Perruisseau-Carrier, Julien and Anja K. Skrivervik, "Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360° phase range," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 138-141, 2008.

13. Carrasco, Eduardo and Julien Perruisseau-Carrier, "Reflectarray antenna at terahertz using graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 253-256, 2013.

14. Li, Tongtong, Hang Wang, Fang Ling, Zheqiang Zhong, and Bin Zhang, "High-efficiency terahertz metasurface with independently controlled and switchable function in transmission and reflection modes," Superlattices and Microstructures, Vol. 146, 106653, 2020.

15. Matos, Randy and Nezih Pala, "VO2-based ultra-reconfigurable intelligent reflective surface for 5G applications," Scientific Reports, Vol. 12, No. 1, 4497, 2022.

16. Scarfe, Samantha, Wei Cui, Adina Luican-Mayer, and Jean-Michel Ménard, "Systematic THz study of the substrate effect in limiting the mobility of graphene," Scientific Reports, Vol. 11, No. 1, 8729, 2021.

17. Zhao, Yi, Qiuping Huang, Honglei Cai, Xiaoxia Lin, and Yalin Lu, "A broadband and switchable VO2-based perfect absorber at the THz frequency," Optics Communications, Vol. 426, 443-449, 2018.

18. Zhou, Runhua, Tingting Jiang, Zhen Peng, Zhenyuan Li, Min Zhang, Shixing Wang, Ling Li, Huawei Liang, Shuangchen Ruan, and Hong Su, "Tunable broadband terahertz absorber based on graphene metamaterials and VO2," Optical Materials, Vol. 114, 110915, 2021.

19. Squires, Andrew D., Xiang Gao, Jia Du, Zhaojun Han, Dong Han Seo, James S. Cooper, Adrian T. Murdock, Simon K. H. Lam, Ting Zhang, and Tim van der Laan, "Electrically tuneable terahertz metasurface enabled by a graphene/gold bilayer structure," Communications Materials, Vol. 3, No. 1, 56, 2022.

20. Lee, Sun-Gyu, Yong-Hyun Nam, Yongjune Kim, Jongyeong Kim, and Jeong-Hae Lee, "A wide-angle and high-efficiency reconfigurable reflectarray antenna based on a miniaturized radiating element," IEEE Access, Vol. 10, 103223-103229, Sep. 2022.

21. Thomas, Arun, Priten Savaliya, Kamal Kumar, Aakansha Suchitta, and Anuj Dhawan, "Au nanowire-VO2 spacer-Au film based optical switches," Journal of the Optical Society of America B, Vol. 35, No. 7, 1687-1697, 2018.
doi:10.1364/JOSAB.35.001687

22. Hassan, Ahmed A., Rania R. Elsharkawy, Demyana A. Saleeb, El-Sayed M. El-Rabie, and Ahmed S. Elkorany, "Single-beam graphene reflectarray for terahertz band communication," Analog Integrated Circuits and Signal Processing, Vol. 112, No. 3, 517-525, 2022.

23. Huang, John and Jose Antonio Encinar, Reflectarray Antennas, John Wiley & Sons, 2007.
doi:10.1002/9780470178775

24. Yang, Jun, Pengjun Wang, Shuangyuan Sun, Ying Li, Zhiping Yin, and Guangsheng Deng, "A novel electronically controlled two-dimensional terahertz beam-scanning reflectarray antenna based on liquid crystals," Frontiers in Physics, Vol. 8, 576045, Oct. 2020.

25. Lim, K. C., J. D. Margerum, and A. M. Lackner, "Liquid crystal millimeter wave electronic phase shifter," Applied Physics Letters, Vol. 62, No. 10, 1065-1067, Mar. 1993.

26. Hsieh, Cho-Fan, Ru-Pin Pan, Tsung-Ta Tang, Hung-Lung Chen, and Ci-Ling Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Optics Letters, Vol. 31, No. 8, 1112-1114, 2006.

27. Chang, Zhuang, Ben You, Lin-Sheng Wu, Min Tang, Yao-Ping Zhang, and Jun-Fa Mao, "A reconfigurable graphene reflectarray for generation of vortex THz waves," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1537-1540, 2016.

28. Perez-Palomino, Gerardo, Mariano Barba, José A. Encinar, Robert Cahill, Raymond Dickie, Paul Baine, and Michael Bain, "Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015.

29. Meng, Xiaomin, Maziar Nekovee, and Dehao Wu, "The design and analysis of electronically reconfigurable liquid crystal-based reflectarray metasurface for 6G beamforming, beamsteering, and beamsplitting," IEEE Access, Vol. 9, 155564-155575, 2021.

30. Dahal, Keshab, Qian Zhang, Ran He, Ishwar Kumar Mishra, and Zhifeng Ren, "Thermal conductivity of (VO2) 1-xCux composites across the phase transition temperature," Journal of Applied Physics, Vol. 121, No. 15, 155103, 2017.

31. Wang, Bingnan, Aydin Sadeqi, Rui Ma, Pu Wang, Wataru Tsujita, Kota Sadamoto, Yoshitsugu Sawa, Hojatollah Rezaei Nejad, Sameer Sonkusale, Cheng Wang, Mina Kim, and Ruonan Han, "Metamaterial absorber for THz polarimetric sensing," Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, Vol. 10531, 170-176, Feb. 2018.