Vol. 130
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-10-21
A Multi-Channel Error Compensation Method for Space-Borne RDBF-SAR
By
Progress In Electromagnetics Research M, Vol. 130, 1-10, 2024
Abstract
The time-varying amplitude error and phase error in the multi-channel will affect the system performance of Range Digital Beam Forming-Synthetic Aperture Radar (RDBF-SAR), which will lead to the elevation of the side lobes amplitude of the echo signal, thus affecting the quality of space-borne synthetic aperture radar (SAR) images. A multi-channel error compensation method for space-borne RDBF-SAR is proposed in this paper. The echo signals of each channel are aligned in the frequency domain. For the amplitude error, the amplitude error compensation factor is obtained by comparing the amplitude of each channel signal with the amplitude of the reference channel signal. For the phase error, the phase error compensation factor is obtained by conjugate multiplication of the phase of each channel signal and the phase of the reference channel signal. Reduce the amount of calculation by averaging. This method can well compensate the amplitude error and phase error, suppress the elevation of the echo side lobe, and make the synthetic aperture radar image more focused and accurate. Finally, the effectiveness of the method is verified by simulation experiments. Under the simulation conditions in this paper, the amplitude compensation reduces the side lobes pulse compression amplitude by 2~10 dB, and the phase compensation reduces it by -1~9 dB.
Citation
Lu Bai, Wei Xu, Pingping Huang, Weixian Tan, and Yaolong Qi, "A Multi-Channel Error Compensation Method for Space-Borne RDBF-SAR," Progress In Electromagnetics Research M, Vol. 130, 1-10, 2024.
doi:10.2528/PIERM24071901
References

1. Freeman, A., W. T. K. Johnson, B. Huneycutt, R. Jordan, S. Hensley, P. Siqueira, and J. Curlander, "The ``Myth'' of the minimum SAR antenna area constraint," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 1, 320-324, 2000.

2. Wang, Z., "Study on imaging techniques for spaceborne multi-channel SAR/InSAR," Xidian University, Xi'an, China, 2018.

3. Li, Bo, Qingchao Zhao, Yanyan Zhang, Da Liang, Wei Wang, Yonghua Cai, JunFeng Li, Pingping Lu, and Robert Wang, "An advanced sparse multi-channel system for spaceborne DBF-SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, 5211513, 2023.

4. Yu, Qi, Wei Xu, Pingping Huang, Weixian Tan, and Yaolong Qi, "An improved null steering digital beamformer based on multi-group time delays for echo separation in HRWS SAR," Remote Sensing Letters, Vol. 14, No. 6, 641-648, 2023.

5. Xu, Wei, Qi Yu, Chonghua Fang, Pingping Huang, Weixian Tan, and Yaolong Qi, "Onboard digital beamformer with multi-frequency and multi-group time delays for high-resolution wide-swath SAR," Remote Sensing, Vol. 13, No. 21, 4354, 2021.

6. Yu, Q., J. Hu, H. Bi, W. Xu, P. Huang, and W. Tan, "Spaceborne real time DBF processing based on multi-group time delayers," Journal of Signal Processing, Vol. 38, 562-570, 2022.

7. Chen, Zhen, Zhimin Zhang, Jinsong Qiu, Yashi Zhou, Wei Wang, Huaitao Fan, and Robert Wang, "A novel motion compensation scheme for 2-D multichannel SAR systems with quaternion posture calculation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 11, 9350-9360, 2020.

8. Pan, Jie, Shuai Wang, Daojing Li, and Xiaochun Lu, "A channel phase error compensation method for space borne array SAR based on antenna pattern and doppler correlation coefficient," Journal of Electronics & Information Technology, Vol. 41, No. 7, 1758-1765, 2019.

9. Suo, Zhiyong, Jingjing Ti, Hongli Xiang, Leru Zhang, Chao Xing, and Tingting Wang, "Airborne elevation DBF-TOPS SAR/InSAR method based on LOS motion compensation and channel error equalization," Remote Sensing, Vol. 14, No. 18, 4542, 2022.

10. Wang, Shuai, Maosheng Xiang, Bingnan Wang, Fubo Zhang, and Yirong Wu, "A channel phase error compensation method for multi-channel synthetic aperture ladar," Optik, Vol. 178, 830-840, 2019.

11. Yu, Q., "Research on digital beamforming in range of spaceborne SAR and its application," Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China, 2022.

12. Li, B., "Study on elevation/azimuth multichannel SAR imaging," Xidian University, Xi'an, China, 2021.

13. Zhao, Qingchao, Yi Zhang, Wei Wang, Kaiyu Liu, Yunkai Deng, Heng Zhang, Yuying Wang, Yashi Zhou, and Robert Wang, "On the frequency dispersion in DBF SAR and digital scalloped beamforming," IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 5, 3619-3632, 2020.

14. Huang, He, Penghui Huang, Yanyang Liu, Huaitao Fan, Yunkai Deng, Xingzhao Liu, and Guisheng Liao, "A novel method for staggered SAR imaging in an elevation multichannel system," IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, 1-19, 2023.

15. Younis, Marwan, Tobias Rommel, Federica Bordoni, Gerhard Krieger, and Alberto Moreira, "On the pulse extension loss in digital beamforming SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 7, 1436-1440, 2015.

16. Huber, Sigurd, Marwan Younis, Gerhard Krieger, and Alberto Moreira, "Error analysis for digital beamforming synthetic aperture radars: A comparison of phased array and array-fed reflector systems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 8, 6314-6322, 2021.

17. Han, Shuo, Yunkai Deng, Qingchao Zhao, Yongwei Zhang, Yanyan Zhang, and Wei Wang, "On spaceborne DBF-SAR adopting the degree of freedom with NLFM waveform: Optimization framework and simulation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 1-15, 2022.

18. Wang, Wei, Robert Wang, Yunkai Deng, Wei Xu, and Lili Hou, "Improved digital beam-forming approach with scaling function for range multi-channel synthetic aperture radar system," IET Radar, Sonar & Navigation, Vol. 10, No. 2, 379-385, 2016.

19. Lei, Wanming, Daobao Xu, Hui Yu, and Ying Liu, "A study on adaptive SCORE processing for range DBF-SAR," Modern Radar, Vol. 41, No. 9, 37-40, 2019.

20. Qiu, Jinsong, Zhimin Zhang, Robert Wang, Pei Wang, Huachun Zhang, Jiang Du, Wei Wang, Zhen Chen, Yashi Zhou, Hongying Jia, and Huifeng Sun, "A novel weight generator in real-time processing architecture of DBF-SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 1-15, 2021.

21. Farhadi, Masoud, Reinhard Feger, Johannes Fink, Thomas Wagner, and Andreas Stelzer, "Combining MIMO DBF with automotive synthetic aperture radar imaging and phase error correction," IEEE Access, Vol. 12, 31944-31959, 2024.