Vol. 121
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-07-16
Inclination Detection of Multi-Mode Orbital Angular Momentum Based on Multi-Label Class-Specific Lightweight Neural Network
By
Progress In Electromagnetics Research Letters, Vol. 121, 71-77, 2024
Abstract
Orbital angular momentum (OAM) becomes a new resource for wireless communication due to the different modes being orthogonal. In OAM-based wireless communications, factors such as tilt and multipath distort the phase of the OAM beam, making the mode difficult to detect. We propose a multi-label class-specific lightweight neural network (MCSLNN) to measure tilt and detect mode from a single image. MCSLNN utilizes the MobileNetV2 network as the backbone feature extraction network, considering the terminal devices with limited computing resources. To improve the performance of multi-label classification, MCSLNN employs residual class-specific attention (CSRA) as the classification layer. Furthermore, MCSLNN employs the beam steering method to verify the correctness of the measured tilt. The network measures the tilt angle with an accuracy of 76% and an estimation error of ±1° in a validation experiment. Finally, we analyze the network's generalization from varying heights above the ground for reflection paths. The results indicate that MCSLNN is adaptable to diverse circumstances, thus making it suitable for 6G communication and radar applications.
Citation
Hui Yang, Yifei Cheng, Zhong Yu, Zhe Wang, and Yi Lu, "Inclination Detection of Multi-Mode Orbital Angular Momentum Based on Multi-Label Class-Specific Lightweight Neural Network," Progress In Electromagnetics Research Letters, Vol. 121, 71-77, 2024.
doi:10.2528/PIERL24050602
References

1. Hu, Tao, Yang Wang, Xi Liao, and Jie Zhang, "OAM-based beam selection for indoor millimeter wave MU-MIMO systems," IEEE Communications Letters, Vol. 25, No. 5, 1702-1706, May 2021.

2. Yan, Yan, Guodong Xie, Martin P. J. Lavery, Hao Huang, Nisar Ahmed, Changjing Bao, Yongxiong Ren, Yinwen Cao, Long Li, Zhe Zhao, et al., "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nature Communications, Vol. 5, No. 1, 4876, Sep. 2014.

3. Yagi, Yasunori, Hirofumi Sasaki, Takayuki Yamada, and Doohwan Lee, "200 Gb/s wireless transmission using dual-polarized OAM-MIMO multiplexing with uniform circular array on 28 GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 5, 833-837, May 2021.

4. Mohammadi, Siavoush M., Lars K. S. Daldorff, Kamyar Forozesh, Bo Thidé, Jan E. S. Bergman, Brett Isham, Roger Karlsson, and T. D. Carozzi, "Orbital angular momentum in radio: Measurement methods," Radio Science, Vol. 45, No. 4, 1-14, 2010.

5. Cano, E. and B. Allen, "Multiple‐antenna phase‐gradient detection for OAM radio communications," Electronics Letters, Vol. 51, No. 9, 724-725, Apr. 2015.

6. Xie, Mutong, Xinlu Gao, Mingyang Zhao, Wensheng Zhai, Wenjing Xu, Jinwang Qian, Mingzheng Lei, and Shanguo Huang, "Mode measurement of a dual-mode radio frequency orbital angular momentum beam by circular phase gradient method," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1143-1146, 2017.

7. Zhang, Yanming, Menglin L. N. Chen, and Li Jun Jiang, "Analysis of electromagnetic vortex beams using modified dynamic mode decomposition in spatial angular domain," Optics Express, Vol. 27, No. 20, 27702-27711, Sep. 2019.

8. Wang, Xiao, Yufeng Qian, JingJing Zhang, Guangdong Ma, Shupeng Zhao, RuiFeng Liu, Hongrong Li, Pei Zhang, Hong Gao, Feng Huang, and Fuli Li, "Learning to recognize misaligned hyperfine orbital angular momentum modes," Photonics Research, Vol. 9, No. 4, B81-B86, Apr. 2021.

9. Raskatla, Venugopal, Purnesh Singh Badavath, and Vijay Kumar, "Convolutional networks for speckle-based orbital angular momentum modes classification," Optical Engineering, Vol. 61, No. 3, 036114-036122, Mar. 2022.

10. Chen, Jiafu, Qingji Zeng, Canming Li, Zebin Huang, Peipei Wang, Wenjie Xiong, Yanliang He, Huapeng Ye, Ying Li, Dianyuan Fan, and Shuqing Chen, "Orbital angular momentum mode demodulation with neural network-assisted coherent nanophotonic circuits," Optics Communications, Vol. 537, 129433, Jun. 2023.

11. Zhang, Yanming and Lijun Jiang, "Suppressing white-noise interference for orbital angular momentum waves via the forward-backward dynamic mode decomposition," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 3, 2879-2884, Mar. 2023.

12. Zhao, Peng, Shikang Li, Yu Wang, Xue Feng, Cui Kaiyu, Liu Fang, Wei Zhang, and Yidong Huang, "Identifying the tilt angle and correcting the orbital angular momentum spectrum dispersion of misaligned light beam," Scientific Reports, Vol. 7, No. 1, 7873, Aug. 2017.

13. Chen, Rui, Hui Xu, Marco Moretti, and Jiandong Li, "Beam steering for the misalignment in UCA-based OAM communication systems," IEEE Wireless Communications Letters, Vol. 7, No. 4, 582-585, Aug. 2018.

14. Chen, Rui, Wen-Xuan Long, Xiaodong Wang, and Jiandong Li, "Multi-mode OAM radio waves: Generation, angle of arrival estimation and reception with UCAs," IEEE Transactions on Wireless Communications, Vol. 19, No. 10, 6932-6947, Oct. 2020.

15. Gao, Xinlu, Xiyao Song, Zhennan Zheng, Mutong Xie, and Shanguo Huang, "Misalignment measurement of orbital angular momentum signal based on spectrum analysis and image processing," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 521-526, Jan. 2020.

16. Sun, Jia-Jing, Sheng Sun, Ling-Jun Yang, and Jun Hu, "Enhanced misalignment estimation of orbital angular momentum signal based on deep recurrent neural networks," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 6, 5522-5527, Jun. 2023.

17. Zhu, Ke and Jianxin Wu, "Residual attention: A simple but effective method for multi-label recognition," Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 184-193, Oct. 2021.

18. Yu, Zhong, Qi Gao, Bingwen He, and Lin Guo, "Effects of concentration, temperature, and geometry on double spiral liquid orbital angular momentum antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 12, 2506-2510, Dec. 2021.

19. Liu, Kang, Yongqiang Cheng, Zhaocheng Yang, Hongqiang Wang, Yuliang Qin, and Xiang Li, "Orbital-angular-momentum-based electromagnetic vortex imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 711-714, 2014.

20. Chen, Xiaoming, Wei Xue, Hongyu Shi, Jianjia Yi, and Wei E. I. Sha, "Orbital angular momentum multiplexing in highly reverberant environments," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 1, 112-115, Jan. 2020.

21. Wang, Lei, Woocheon Park, Cheng Yang, Heinz-Dietrich Brüns, Dong Gun Kam, and Christian Schuster, "Wireless communication of radio waves carrying orbital angular momentum (OAM) above an infinite ground plane," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 2257-2264, Oct. 2020.

22. Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510-4520, 2018.

23. Xiong, Xiaowen, Shilie Zheng, Zelin Zhu, Yuqi Chen, Hongzhe Shi, Bingchen Pan, Cheng Ren, Xianbin Yu, Xiaofeng Jin, Wei E. I. Sha, and Xianmin Zhang, "Experimental study of plane spiral OAM mode-group based MIMO communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 1, 641-653, Jan. 2022.