Vol. 121
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-07-19
Wearable Metamaterial Inspired Antenna for ISM, WiMAX , WLAN, Wi-Fi 6E(6 GHz ), Aeronautical Radio Navigation and Radio-Location Applications
By
Progress In Electromagnetics Research Letters, Vol. 121, 93-99, 2024
Abstract
A compact, spectacle shaped, tri-band, metamaterial inspired antenna is designed for ISM, WiMax, WLAN, Wi-Fi 6E 6 GHz, Aeronautical Radio navigation and Radio-Location Applications. The radiating electrical length is modified by two successive CSRR structures to mitigate the current and create a band notch at 3.9 GHz as well as 5.5 GHz. The proposed prototype is designed on low cost FR-4 material. Antenna performance parameters are investigated on a four-layered phantom model. The results obtained reveal that the antenna works well on free space as well as at the close proximity to human tissues.
Citation
Navneet Sharma, Himani, and Shilpa Srivastava, "Wearable Metamaterial Inspired Antenna for ISM, WiMAX , WLAN, Wi-Fi 6E(6 GHz ), Aeronautical Radio Navigation and Radio-Location Applications," Progress In Electromagnetics Research Letters, Vol. 121, 93-99, 2024.
doi:10.2528/PIERL24042505
References

1. Selvi, N. Thamil, P. Thiruvalar Selvan, S. P. K. Babu, and R. Pandeeswari, "Multiband metamaterial-inspired antenna using split ring resonator," Computers & Electrical Engineering, Vol. 84, 106613, 2020.

2. Chaturvedi, Divya and S. Raghavan, "A compact metamaterial-inspired antenna for WBAN application," Wireless Personal Communications, Vol. 105, No. 4, 1449-1460, 2019.

3. Hasan, Md. Mehedi, Maskia Rahman, Mohammad Rashed Iqbal Faruque, Mohammad Tariqul Islam, and Mayeen Uddin Khandaker, "Electrically compact SRR-loaded metamaterial inspired quad band antenna for Bluetooth/WiFi/WLAN/WiMAX system," Electronics, Vol. 8, No. 7, 790, 2019.

4. Rao, M. Venkateswara, B. T. P. Madhav, T. Anilkumar, and B. Prudhvi Nadh, "Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications," AEU - International Journal of Electronics and Communications, Vol. 97, 229-241, 2018.

5. Sharma, Narinder and Sumeet Singh Bhatia, "Edge-coupled parasitic split ring resonator based metamaterial inspired low-cost diamond shaped fractal antenna for multiband wireless applications," International Journal of Electronics, Vol. 109, No. 2, 317-336, 2022.

6. Saraswat, Ritesh Kumar, "A hybrid fractal metamaterial inspired multiband antenna for wireless applications," Wireless Personal Communications: An Internaional Journal, Vol. 124, No. 3, 2593-2612, 2022.

7. Jha, Pankaj, Anubhav Kumar, Asok De, and Rakesh Kumar Jain, "CPW-fed metamaterial inspired compact multiband antenna for LTE/5G/WLAN communication," Frequenz, Vol. 76, No. 7-8, 401-407, 2022.

8. Sharma, Navneet, Anubhav Kumar, Asok De, and Rakesh Kumar Jain, "Design of compact hexagonal shaped multiband antenna for wearable and tumor detection applications," Progress In Electromagnetics Research M, Vol. 105, 205-217, 2021.
doi:10.2528/PIERM21081701

9. Sharma, Navneet, Anubhav Kumar, Asok De, and Rakesh Kumar Jain, "Circularly polarized antenna for ISM (5.8 GHz), satellite communications and UWB applications," 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), 303-307, Noida, India, 2021.

10. Kumar, Anubhav, Shushrut Das, and R. L. Yadava, "DGS and SRR based FSS microstrip antenna for 5G communication," 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), 1-5, Ghaziabad, India, 2018.

11. Verma, Rahul Kumar, Anubhav Kumar, and Ram Lal Yadava, "Compact multiband CPW fed sub 6 GHz frequency reconfigurable antenna for 5G and specific UWB applications," Journal of Communications, Vol. 15, No. 4, 345-349, 2020.
doi:10.12720/jcm.15.4.345-349

12. Kumar, Anubhav, "Compact 4 x 4 CPW-fed MIMO antenna with Wi-Fi and WLAN notch for UWB applications," Radioelectronics and Communications Systems, Vol. 64, No. 2, 92-98, 2021.

13. Italian National Research Council, Institute for Applied Physics, Florence, Italy, "An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz," Available: http://niremf.ifac.cnr.it/tissprop/.