Vol. 121
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-07-02
Non-Conformal Design and Fabrications of Single Arm Conical Log Spiral Antenna
By
Progress In Electromagnetics Research Letters, Vol. 121, 33-40, 2024
Abstract
For a conical log spiral antenna (CLSA), it is quite common to place the strip conductor conformally to the conical surface, and the antenna requires an extra impedance matching network. On the other hand, non-conformal orientation can solve the impedance matching issue, but fabrication is not as straightforward as conformal placement. This work considers the non-conformal placement of a strip conductor which facilitates self-matching while using smart additive manufacturing techniques for prototyping to ease the fabrication complexity. The impact of the additional dielectric support on the performance parameters of CLSA is investigated. Finally, the CLSA was prototyped using two different conductive elements (copper strip and conductive paint) on the 3D-printed support. Experimental and numerical results are shown to agree well for both copper strip and paint-based approaches. The self-matched CLSA provided a maximum impedance bandwidth of 128%, 3-dB axial ratio bandwidth (AR BW) of 63.56%, and gains of 10.32±1.94 dBi. The additive manufacturing techniques are shown to allow design flexibility and mitigate fabrication difficulties.
Citation
Purno Ghosh, Frances Harackiewicz, Liton Chandra Paul, and Ashish Mahanta, "Non-Conformal Design and Fabrications of Single Arm Conical Log Spiral Antenna," Progress In Electromagnetics Research Letters, Vol. 121, 33-40, 2024.
doi:10.2528/PIERL24042404
References

1. Hertel, Thorsten W. and Glenn S. Smith, "Analysis and design of two-arm conical spiral antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 1, 25-37, 2002.

2. Wei, Tang and Tang Xiong, "Minimized conical spiral antenna for GNSS," 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), 1-4, 2013.

3. Ernest, Anthony J., Youssef Tawk, Joseph Costantine, and Christos G. Christodoulou, "A bottom fed deployable conical log spiral antenna design for CubeSat," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 41-47, 2015.

4. Costantine, Joseph, Youssef Tawk, Ignacio Maqueda, Maria Sakovsky, Gina Olson, Sergio Pellegrino, and Christos G. Christodoulou, "UHF deployable helical antennas for CubeSats," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3752-3759, 2016.

5. Sureda, Miquel, Marco Sobrino, Oriol Millan, Andrea Aguilella, Arnau Solanellas, Marc Badia, Joan Francesc Munoz-Martin, Lara Fernandez, Joan A. Ruiz-De-Azua, and Adriano Camps, "Design and testing of a helix antenna deployment system for a 1U CubeSat," IEEE Access, Vol. 9, 66103-66114, 2021.

6. Liu, Xueli, Constantinos L. Zekios, and Stavros V. Georgakopoulos, "Analysis of a packable and tunable origami multi-radii helical antenna," IEEE Access, Vol. 7, 13003-13014, 2019.

7. Hussein, Khalid Fawzy Ahmed, "Conical linear spiral antenna for tracking, telemetry and command of low earth orbit satellites," Progress In Electromagnetics Research C, Vol. 29, 97-107, 2012.

8. Mei, J. N., D. W. Ding, and G. Wang, "Design of compact wideband circularly polarized conical helix," International Conference on Computer Information Systems and Industrial Applications, 139-141, 2015.

9. Saintsing, Christy D., Benjamin S. Cook, and Manos M. Tentzeris, "An origami inspired reconfigurable spiral antenna," 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 46377, Buffalo, NY, USA, 2014.

10. Huang, Jingjian, Hongyu Zhao, Yang Zhou, Weiwei Wu, and Nai-Chang Yuan, "Far-field symmetry analysis and improvement of the cavity backed planar spiral antenna," Progress In Electromagnetics Research C, Vol. 47, 11-18, 2014.

11. Tang, Xihui, Yejun He, and Botao Feng, "Design of a wideband circularly polarized strip-helical antenna with a parasitic patch," IEEE Access, Vol. 4, 7728-7735, 2016.

12. Tang, Xihui, Botao Feng, and Yunliang Long, "The analysis of a wideband strip-helical antenna with 1.1 turns," International Journal of Antennas and Propagation, Vol. 2016, No. 1, 5950472.1-7, 2016.

13. Helena, Diogo, Amélia Ramos, Tiago Varum, and João Nuno Matos, "Antenna design using modern additive manufacturing technology: A review," IEEE Access, Vol. 8, 177064-177083, 2020.

14. Ghazali, Mohd Ifwat Mohd, Saranraj Karuppuswami, Amanpreet Kaur, and Premjeet Chahal, "3D printed high functional density packaging compatible out-of-plane antennas," Additive Manufacturing, Vol. 30, 100863, 2019.

15. Ghosh, Purno and Frances Harackiewicz, "3D printed low profile strip‐based helical antenna," Progress In Electromagnetics Research C, Vol. 127, 195-205, 2022.
doi:10.2528/PIERC22101506

16. Ghosh, Purno and Frances J. Harackiewicz, "Three-dimensional-printed strip and paint-based semiellipsoidal helical antenna," Microwave and Optical Technology Letters, Vol. 65, No. 8, 2262-2266, 2023.

17. Ghosh, Purno and Frances Harackiewicz, "Analysis and fabrication of conductive strip and paint-based hemispherical helical antennas on 3D printed structure," Progress In Electromagnetics Research C, Vol. 135, 1-11, 2023.
doi:10.2528/PIERC23050206

18. Ghosh, Purno, Liton Chandra Paul, and Tithi Rani, "Rapid construction of electrically small spherical and cylindrical antennas," E-Prime - Advances in Electrical Engineering, Electronics and Energy, Vol. 8, 100631, 2024.

19. Wong, Kin-Lu and Yi-Fang Lin, "Stripline-fed printed triangular monopole," Electronics Letters, Vol. 33, No. 17, 1428-1429, 1997.

20. Dyson, J., "The characteristics and design of the conical log-spiral antenna," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 4, 488-499, 1965.