Vol. 120
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-11
A Compact Wide-Band Circular Slot Quad-Port MIMO Antenna for 5G Wireless Applications
By
Progress In Electromagnetics Research Letters, Vol. 120, 65-71, 2024
Abstract
This paper introduces a 4-port antenna tailored for 5G, operating in the 4.4 to 7.25 GHz (Fractional Bandwidth is 48.9%) range with a 10 dB impedance bandwidth. The operating bandwidth includes the n79 band (4.4-5 GHz), 5G WLAN band (5.125-5.825 GHz), and Wi-Fi 6E band (5.925 to 7.125 GHz). Constructed on a compact FR4 substrate (0.057λ × 0.057λ × 0.0018 λ (where λ is the wavelength at 4.4 GHz), it exhibits robust performance in fabrication and measurements. The single antenna covers a total area as small as 20 × 17.6 mm2, which enables the compactness of the MIMO antenna with a gain of up to 6 dBi and 85% radiation efficiency; it supports MIMO with a low correlation coefficient (< 0.02), high diversity gain (up to 9.98 dB), and minimal channel capacity loss (0.25 bps/Hz). The Total Active Reflective Coefficient (TARC) is computed to validate MIMO performance over the operating bandwidth. Featuring bidirectional radiation patterns in both E-plane and H-plane, the antenna is well suited for 5G applications, demonstrating potential for future wireless systems.
Citation
Purushothaman Janaki Ramal, Syed Nawab Syed Althaf, Kannan Vishnulakshmi, Palaniselvan Sundaravadivel, and Rajesh Kumar Dhandap, "A Compact Wide-Band Circular Slot Quad-Port MIMO Antenna for 5G Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 120, 65-71, 2024.
doi:10.2528/PIERL24040301
References

1. Chettri, Lalit and Rabindranath Bera, "A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems," IEEE Internet of Things Journal, Vol. 7, No. 1, 16-32, 2019.

2. Khan, Ijaz, Qun Wu, Inam Ullah, Saeed Ur Rahman, Habib Ullah, and Kuang Zhang, "Designed circularly polarized two-port microstrip MIMO antenna for WLAN applications," Applied Sciences, Vol. 12, No. 3, 1068, 2022.

3. Malviya, Leeladhar, Rajib Kumar Panigrahi, and M. V. Kartikeyan, MIMO Antennas for Wireless Communication: Theory and Design, CRC Press, Boca Raton, FL, USA, 2020.
doi:10.1201/9781003080275

4. Qu, Longyue, Haiyan Piao, and Hyeongdong Kim, "Compact wideband MIMO mobile‐antenna system design using mode‐based decoupling techniques," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, e21765, 2019.

5. Deng, Changjiang, Di Liu, and Xin Lv, "Tightly arranged four-element MIMO antennas for 5G mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6353-6361, 2019.

6. Kabiri, Yasin, Alejandro L. Borja, James R. Kelly, and Pei Xiao, "A technique for MIMO antenna design with flexible element number and pattern diversity," IEEE Access, Vol. 7, 86157-86167, 2019.

7. Kumar, Sumit, Amruta S. Dixit, Rajeshwari R. Malekar, Hema D. Raut, and Laxmikant K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020.

8. Soltani, Saber and Ross D. Murch, "A compact planar printed MIMO antenna design," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1140-1149, 2015.

9. Chattha, Hassan Tariq, "4-port 2-element MIMO antenna for 5G portable applications," IEEE Access, Vol. 7, 96516-96520, 2019.

10. Al-Fayyadh, Hussein Qasim, Abdulghafor Abdulghafar Abdulhameed, Abdulkareem Swadi Abdullah, and Haider Mohammed Alsabbagh, "Flexible (2 x 1) MIMO antenna with electromagnetic band gap unit cell for WiMAX applications," Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 25, No. 4, 3061-3072, 2017.
doi:10.3906/elk-1603-94

11. Kumar, Amit, Abdul Quaiyum Ansari, Binod Kumar Kanaujia, Jugul Kishor, and Sachin Kumar, "An ultra-compact two-port UWB-MIMO antenna with dual band-notched characteristics," AEU - International Journal of Electronics and Communications, Vol. 114, 152997, 2020.

12. Jha, Kumud Ranjan, Z. A. Pandit Jibran, Chitra Singh, and Satish Kumar Sharma, "4-port MIMO antenna using common radiator on a flexible substrate for sub-1 GHz, sub-6 GHz 5G NR, and Wi-Fi 6 applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 689-701, 2021.

13. Thummaluru, Sreenath Reddy, Mohammad Ameen, and Raghvendra Kumar Chaudhary, "Four-port MIMO cognitive radio system for midband 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5634-5645, 2019.

14. Biswas, Arumita and Vibha Rani Gupta, "Design and development of low profile MIMO antenna for 5G new radio smartphone applications," Wireless Personal Communications, Vol. 111, No. 3, 1695-1706, 2020.

15. Kulkarni, Jayshri, Abdullah G. Alharbi, Arpan Desai, Chow-Yen-Desmond Sim, and Ajay Poddar, "Design and analysis of wideband flexible self-isolating MIMO antennas for sub-6 GHz 5G and WLAN smartphone terminals," Electronics, Vol. 10, No. 23, 3031, 2021.

16. Sun, Libin, Haigang Feng, Yue Li, and Zhijun Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6364-6369, 2018.

17. Ramanujam, Rajkumar and Marichamy Perumalsamy, "An ultra‐thin flexible four port MIMO antenna for WBAN communications," Microwave and Optical Technology Letters, Vol. 64, No. 7, 1245-1251, 2022.

18. Paracha, Kashif Nisar, Sharul Kamal Abdul Rahim, Hassan Tariq Chattha, Saqer Saleh Aljaafreh, Sabih Ur Rehman, and Yew Chiong Lo, "Low-cost printed flexible antenna by using an office printer for conformal applications," International Journal of Antennas and Propagation, Vol. 2018, 3241581, 2018.