Vol. 120
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-08
Design of Superconducting h -Shaped Microstrip Antennas on Anisotropic Substances Using Hybrid Cavity Model
By
Progress In Electromagnetics Research Letters, Vol. 120, 23-29, 2024
Abstract
This study investigates the effects of various antenna parameters, such as the substrate material, thickness of the superconducting patch, and operating temperature, on the resonance frequency and surface resistance/reactance of an H-shaped patch antenna printed on a uniaxial anisotropic substrate using a hybrid cavity model and fabricated with superconductor material. This model stands out for its simplified mathematical approach and cost effectiveness. Importantly, the numerical results demonstrate a high level of agreement with the experimental findings reported in the literature, reinforcing the reliability of our study. Additionally, other numerical results demonstrate the impact of the superconductivity materials on the resonant characteristics of the H-shaped compact microstrip antenna.
Citation
Mohamed Bedra, Djemai Arar, Djamel Benatia, Sami Bedra, and Akram Bediaf, "Design of Superconducting h -Shaped Microstrip Antennas on Anisotropic Substances Using Hybrid Cavity Model," Progress In Electromagnetics Research Letters, Vol. 120, 23-29, 2024.
doi:10.2528/PIERL24040103
References

1. Boughrara, Akrame Sofiane, Siham Benkouda, Abdelouahab Bouraiou, and Tarek Fortaki, "Study of stacked high tc superconducting circular disk microstrip antenna in multilayered substrate containing isotropic and/or uniaxial anisotropic materials," Advanced Electromagnetics, Vol. 8, No. 3, 1-5, 2019.

2. Chen, Zhi Ning and Michael Yan Wah Chia, Broadband Planar Antennas: Design and Applications, John Wiley & Sons, 2006.

3. Fusco, V. F., Teoria e Técnicas De Antenas: Princípios e Prática, Bookman Editora, 2009.

4. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

5. Sheta, Abdel Fattah, "A novel H‐shaped patch antenna," Microwave and Optical Technology Letters, Vol. 29, No. 1, 62-66, 2001.

6. Gao, S. C., L. W. Li, M. S. Leong, and Tat Yeo, "Analysis of an H-shaped patch antenna by using the FDTD method," Progress In Electromagnetics Research, Vol. 34, 165-187, 2001.

7. Palanisamy, V. and R. Garg, "Rectangular ring and H-shaped microstrip antennas --- Alternatives to rectangular patch antenna," Electronics Letters, Vol. 21, No. 19, 874-876, 1985.

8. Hung, C. C., S. M. Yang, and S. E. Tsai, "On the mechanics of composite structure and electromagnetics of microstrip antenna," Advances in Mechanical Engineering, Vol. 10, No. 3, 2018.

9. Nelson, Robert M., David A. Rogers, and A. Gomes D'Assuncao, "Resonant frequency of a rectangular microstrip patch on several uniaxial substrates," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 7, 973-981, 1990.

10. Alexopoulos, N. G., "Integrated-circuit structures on anisotropic substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, No. 10, 847-881, 1985.

11. Braaten, Benjamin D., David A. Rogers, and Robert M. Nelson, "Multi-conductor spectral domain analysis of the mutual coupling between printed dipoles embedded in stratified uniaxial anisotropic dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1886-1898, 2012.

12. Bedra, Randa, Sami Bedra, and Tarek Fortaki, "Analysis of elliptical-disk microstrip patch printed on isotropic or anisotropic substrate materials," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 251-255, 2016.

13. Bedra, Sami, Siham Benkouda, Randa Bedra, and Tarek Fortaki, "Characteristics of HTS inverted circular patches on anisotropic substrates," Journal of Computational Electronics, Vol. 20, 892-899, 2021.

14. Bedra, Sami, Randa Bedra, Siham Benkouda, and Tarek Fortaki, "Study of an inverted rectangular patch printed on anisotropic substrates," IETE Journal of Research, Vol. 68, No. 2, 1056-1063, 2022.

15. Bhatnagar, Satish Kumar, "New design formulae for equilateral triangular microstrip antenna," International Research Journal of Engineering and Technology, Vol. 7, No. 11, 946-952, 2020.

16. Wang, Zhongbao, Xiaofeng Li, Shaojun Fang, and Yuanan Liu, "An accurate edge extension formula for calculating resonant frequency of electrically thin and thick rectangular patch antennas with and without air gaps," IEEE Access, Vol. 4, 2388-2397, 2016.

17. Akdagli, A. and A. Toktas, "A novel expression in calculating resonant frequency of H–shaped compact microstrip antennas obtained by using artificial bee colony algorithm," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2049-2061, 2010.

18. Agaba, Chahinaz, Randa Bedra, Sami Bedra, Sihem Benkouda, and Tarek Fortaki, "Study of superconducting equilateral triangular patch printed on anisotropic dielectric substrates," 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE), 1-6, 2022.

19. Bedra, Sami, Randa Bedra, Siham Benkouda, and Tarek Fortaki, "Analysis of HTS circular patch antennas including radome effects," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 7, 843-850, 2018.

20. Ustun, Deniz and Feyza Toktas, "Surrogate-based computational analysis and design for H-shaped microstrip antenna," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 1, 71-82, 2021.

21. Gao, S. C., L. W. Li, M. S. Leong, and Tat Yeo, "Analysis of an H-shaped patch antenna by using the FDTD method," Progress In Electromagnetics Research, Vol. 34, 165-187, 2001.

22. Sheta, Abdel Fattah, Ashraf Mohra, and Samir F. Mahmoud, "Multi‐band operation of a compact H‐shaped microstrip antenna," Microwave and Optical Technology Letters, Vol. 35, No. 5, 363-367, 2002.

23. Mhamdi, Ahmed, Sami Bedra, Randa Bedra, and Siham Benkouda, "CAD cavity model analysis of high Tc superconducting rectangular patch printed on anisotropic substrates," 2017 5th International Conference on Electrical Engineering --- Boumerdes (ICEE-B), 1-4, 2017.