login
Vol. 119
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-04-21
A Compact Wideband Waveguide Filtering Antenna with Transmission Zero
By
Progress In Electromagnetics Research Letters, Vol. 119, 59-65, 2024
Abstract
This letter describes the design of a third-order, compact, wideband waveguide filtering antenna with a transmission zero (TZ) in the upper stopband. A novel frequency-variant coupling (FVC) network that provides a TZ in addition to the pole is used to achieve compactness and higher selectivity. The position of the TZ can be changed in the upper stopband by altering the physical parameters of the proposed FVC. The radiating waveguide aperture is matched to the real admittance of the generator over a wide bandwidth by utilizing coupled-resonator theory. This leads to a wide fractional bandwidth of 23%, along with a TZ at the upper stopband. The filtering antenna has been manufactured using metal 3-D printing to achieve low manufacturing costs and light weight. The measured results are in good agreement with the simulated ones, which shows the feasibility of the proposed FVC structure for the design of the waveguide filtering antenna with a TZ.
Citation
Iqram Haider, Ananjan Basu, and Shiban Kishen Koul, "A Compact Wideband Waveguide Filtering Antenna with Transmission Zero," Progress In Electromagnetics Research Letters, Vol. 119, 59-65, 2024.
doi:10.2528/PIERL24030403
References

1. Yusuf, Yazid and Xun Gong, "Compact low-loss integration of high-Q 3-D filters with highly efficient antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 857-865, Apr. 2011.

2. Mao, Chun Xu, Yao Zhang, Xiu Yin Zhang, Pei Xiao, Yi Wang, and Steven Gao, "Filtering antennas: Design methods and recent developments," IEEE Microwave Magazine, Vol. 22, No. 11, 52-63, Nov. 2021.

3. Chen, Chunling, "A compact wideband endfire filtering antenna inspired by a uniplanar microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 853-857, Apr. 2022.

4. Xie, Han-Yu, Bian Wu, Yue-Lin Wang, Chi Fan, Jian-Zhong Chen, and Tao Su, "Wideband SIW filtering antenna with controllable radiation nulls using dual-mode cavities," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1799-1803, Sep. 2021.

5. Qi, Shi-Shan, Yue Guo, and Wen Wu, "Wideband filtering waveguide antenna based on the stepped impedance resonator," IET Microwaves, Antennas & Propagation, Vol. 17, No. 3, 183-189, 2023.

6. Wertheimer, R. and L. Lewin, "Advanced theory of waveguides," Ann. Télécommun, Vol. 8, 312, 1953.
doi:10.1007/BF03022297

7. Wu, Yu-Ming, Sai-Wai Wong, Hang Wong, and Fu-Chang Chen, "A design of bandwidth-enhanced cavity-backed slot filtenna using resonance windows," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1926-1930, Mar. 2019.

8. Ludlow, Peter, Vincent Fusco, George Goussetis, and Dmitry E. Zelenchuk, "Applying band-pass filter techniques to the design of small-aperture evanescent-mode waveguide antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 134-142, Jan. 2013.

9. Mahmud, Rashad H., Idris H. Salih, Xiaobang Shang, Talal Skaik, and Yi Wang, "A filtering waveguide aperture antenna based on all-resonator structures," Microwave and Optical Technology Letters, Vol. 65, No. 8, 2378-2383, 2023.

10. Xiang, Kai-Ran, Fu-Chang Chen, and Qing-Xin Chu, "High selectivity and high gain X-band waveguide filtering antenna based on triple-mode resonator," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6953-6958, Oct. 2021.

11. Mahmud, Rashad H., Raad S. Jarjees, Yang Yu, Ekasit Nugoolcharoenlap, Talal Skaik, Moataz M. Attallah, and Yi Wang, "A monolithically printed filtering waveguide aperture antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 5, 1154-1158, May 2023.

12. Sandhu, Muhammad Yameen, Maciej Jasinski, Adam Lamecki, Roberto Gómez-García, and Michal Mrozowski, "Inline waveguide filter with transmission zeros using a modified-T-shaped-post coupling inverter," IEEE Microwave and Wireless Technology Letters, Vol. 33, No. 2, 145-148, Feb. 2023.
doi:10.1109/LMWC.2022.3208141

13. Sandhu, Muhammad, Michal Mrozowski, Adam Lamecki, and Roberto Gómez-García, "Inline generalized Chebyshev dielectric waveguide filters with nonlinear frequency-variant inverters," 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 189-191, Perugia, Italy, 2021.

14. Majeed, Umar A., Muhammad Y. Sandhu, Adam Lamecki, Roberto Gómez-García, and Michal Mrozowski, "Inline waveguide filter with compact frequency-dependent coupling producing two additional poles and three transmission zeros," 2023 53rd European Microwave Conference (EuMC), 295-298, Berlin, Germany, 2023.

15. Sandhu, Muhammad Yameen, Maciej Jasinski, Adam Lamecki, Roberto Gómez-García, and Michal Mrozowski, "Frequency-variant double-zero single-pole reactive coupling networks for coupled-resonator microwave bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 1, 321-339, 2024.
doi:10.1109/TMTT.2023.3284688

16. Politi, Marco and Alessandro Fossati, "Direct coupled waveguide filters with generalized Chebyshev response by resonating coupling structures," The 40th European Microwave Conference, 966-969, Paris, France, 2010.

17. Matthaei, G., Leo Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures, Artech House, 1980.

18. Sandhu, Muhammad Yameen, Adam Lamecki, Roberto Gómez-García, and Michal Mrozowski, "Compact quasi-elliptic-type inline waveguide bandpass filters with nonlinear frequency-variant couplings," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 11, 4933-4946, Nov. 2023.
doi:10.1109/TMTT.2023.3269518

19. Mul, Martyna, Adam Lamecki, Roberto Gómez-García, and Michal Mrozowski, "Inverse nonlinear eigenvalue problem framework for the synthesis of coupled-resonator filters with nonresonant nodes and arbitrary frequency-variant reactive couplings," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 12, 5203-5216, Dec. 2021.
doi:10.1109/TMTT.2021.3119288

20. CST Microwave Studio, Darmstadt, Germany, 2009.

21. Mahmud, Rashad H. and Michael J. Lancaster, "High-gain and wide-bandwidth filtering planar antenna array-based solely on resonators," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2367-2375, May 2017.