Vol. 120
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-12
Low-Profile Circularly Polarized Dual-Beam Holographic Antenna
By
Progress In Electromagnetics Research Letters, Vol. 120, 73-79, 2024
Abstract
This paper presents the design of a low-profile circularly polarized dual-beam holographic antenna. Firstly, by employing a novel outer square inner circular (OSIC) structure as the basic unit of the hologram pattern, better performance is achieved for low-profile dielectric substrate holographic antennas. Secondly, a method of four-zone phase co-modulation is used to derive the impedance modulation formula of the hologram pattern. This formula was employed to model and generate a circularly polarized dual-beam holographic antenna, and the feasibility of theoretical analysis is verified through simulation and measurement. The antenna operates within the frequency range of 10.23 GHz to 16.59 GHz, with maximum gains of 16dBi and 15.8dBi for dual beams, respectively. The results indicate that this design method can realize circularly polarized dual-beam holographic antennas and provide some reference for satellite communication applications.
Citation
Lanzheng Liu, Jincheng Xue, Ao Ni, Zhuopeng Wang, and Mingxiang Pang, "Low-Profile Circularly Polarized Dual-Beam Holographic Antenna," Progress In Electromagnetics Research Letters, Vol. 120, 73-79, 2024.
doi:10.2528/PIERL24030201
References

1. El Sherbiny, Moniem, Aly E. Fathy, Arye Rosen, Gary Ayers, and Stewart M. Perlow, "Holographic antenna concept, analysis, and parameters," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 830-839, Mar. 2004.

2. Li, Mei, Ming-Chun Tang, and Shaoqiu Xiao, "Design of a LP, RHCP and LHCP polarization-reconfigurable holographic antenna," IEEE Access, Vol. 7, 82776-82784, 2019.

3. Fong, Bryan H., Joseph S. Colburn, John J. Ottusch, John L. Visher, and Daniel F. Sievenpiper, "Scalar and tensor holographic artificial impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3212-3221, Oct. 2010.

4. Zadeh, Mohammad Amin Chaychi and Nader Komjani, "Flat-topped radiation pattern synthesis of a conformal leaky-wave holographic antenna," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 5, 4045-4054, May 2023.

5. Nannetti, M., F. Caminita, and S. Maci, "Leaky-wave based interpretation of the radiation from holographic surfaces," 2007 IEEE Antennas and Propagation Society International Symposium, 5813-5816, IEEE, 2007.

6. Kampouridou, Despoina and Alexandros Feresidis, "Tunable multibeam holographic metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 11, 2264-2267, Nov. 2022.

7. Nguyen, Thi Duyen, Thi Hai Yen Nguyen, and Gangil Byun, "Multi-beam holographic metasurface antenna using stepped-impedance distributions," 2023 IEEE International Symposium on Antennas and Propagation (ISAP), 1-2, Kuala Lumpur, Malaysia, 2023.

8. Rusch, Christian, Stefan Beer, Philipp Pahl, and Thomas Zwick, "Multilayer holographic antenna with beam scanning in two dimensions at W-band," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2625-2628, Gothenburg, Sweden, 2013.

9. Zhu, Liang, Ying Liu, and Yongtao Jia, "A high-gain circularly-polarized holographic antenna based on impedance-modulated surface," 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), 1-3, Fuzhou, China, 2020.

10. Wang, Jian and Rui Yang, "Generating high-purity directive circularly polarized beams from conformal anisotropic holographic metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 11, 10718-10723, Nov. 2022.

11. Su, Tao, Qingqing Zhang, Rongrong Chen, and Chen Sun, "Novel design of surface-wave holographic antenna miniaturization," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1077-1080, 2015.

12. Liu, Ying, Na Li, Yongtao Jia, Wenbo Zhang, and Zhipeng Zhou, "Low RCS and high-gain patch antenna based on a holographic metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 492-496, Mar. 2019.

13. Kong, Xudong, Yucen Tian, Qiang Feng, and Long Li, "High-efficiency cylindrical conformal holographic metasurface based on tensor impedance modulation surface," 2022 IEEE MTT-S International Wireless Symposium (IWS), Vol. 1, 1-3, Harbin, China, 2022.

14. Zadeh, Mohammad Amin Chaychi, Nader Komjani, and Sajjad Zohrevand, "Multibeam 5G conical leaky-wave antenna based on holographic technique," 2022 6th International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), 1-5, Tehran, Iran, Islamic, 2022.

15. Xue, Song, Yizhu Shen, and Sanming Hu, "Dual circularly-polarized holographic metasurface antenna," 2020 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT), 1-3, Tianjin, China, 2020.

16. Liu, Ying, Liang Zhu, and Yongtao Jia, "A wideband low-radar cross section circularly polarized holographic antenna based on hybrid metasurface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 1, e22917, 2022.

17. Kim, Samuel, David Shrekenhamer, Jeffrey Will, R. Awadallah, and J. Miragliotta, "High impedance holographic metasurfaces for conformal and high gain antenna applications," 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), 1-4, Las Vegas, NV, USA, 2018.

18. Lv, Huan-Huan, Qiu-Lin Huang, Jin-Lin Liu, Jian-Qiang Hou, and Xiao-Wei Shi, "Holographic design of beam-switchable leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2736-2740, Dec. 2019.

19. Movahhedi, Mostafa, Majid Karimipour, and Nader Komjani, "Multibeam bidirectional wideband/wide-scanning-angle holographic leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1507-1511, 2019.

20. Li, Jiang, Chun Yang, Qi Chen, Bo Li, and Xiaoyang He, "Millimeter-wave circularly polarized holographic antenna based on artificial impedance surface," Journal of Terahertz Science and Electronic Information Technology, Vol. 14, No. 4, 581-585, 2016.

21. Gan, Lei, Wen Jiang, Shuxi Gong, Q. Chen, and Xiaoqiu Li, "A low-profile and high-gain circularly polarized antenna based on holographic principle," 2018 Asia-Pacific Microwave Conference (APMC), 1031-1033, Kyoto, Japan, 2018.

22. Wang, Yi-Dong, Di Wang, Jin Zhao, Li-Zheng Yin, Yun-Hua Tan, and Pu-Kun Liu, "Active holographic metasurface for electrically controllable 2-D beam scanning," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Nanjing, China, 2021.

23. Jia, Yongtao, Ying Liu, Yijun Feng, and Zhipeng Zhou, "Low-RCS holographic antenna with enhanced gain based on frequency-selective absorber," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6516-6526, Sep. 2020.

24. Minatti, Gabriele, Francesco Caminita, Massimiliano Casaletti, and Stefano Maci, "Spiral leaky-wave antennas based on modulated surface impedance," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4436-4444, Dec. 2011.

25. Zhang, Jingya, "Scropue holographic impedance surface antenna design," Xi'an University of Electronic Science and Technology, Xi'an, China, 2019.

26. Eltersy, Nermeen A., Hend A. Malhat, and Saber H. Zainud-Deen, "Dual-beam conformal hologram metasurface leaky wave antenna based on surface impedance modulation," 2023 40th National Radio Science Conference (NRSC), Vol. 1, 9-16, Giza, Egypt, 2023.