Vol. 120
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-12
Compact Double Layer Two via Electromagnetic Band Gap Structure for RCS Reduction
By
Progress In Electromagnetics Research Letters, Vol. 120, 89-93, 2024
Abstract
In this paper, a multi-layered mushroom-type electromagnetic band gap (EBG) structure is proposed. A double layer two via EBG (DLTV EBG) structure is designed at 1.65 GHz. The proposed DLTV-EBG structure consists of a two-layer dielectric substrate, which reduces the lateral sizes due to a multilayer topology. By adjusting the patch dimensions and positions of the vias, the center frequency, and equivalent L and C parameters meet design requirements. In a DLTV-EBG, layer-1 has a square ring patch; layer-2 has a circular ring; outer square ring patch with 2 edged located vias gives the additional capacitance and inductance to achieve compactness. The simulation of the DLTV-EBG structure is carried out using the Ansys high-frequency structure simulator (HFSS) and experimentally validated. The band gap of the DLTV-EBG structure is measured using suspended microstrip line (SML) method. The Experimental results agree well with simulation one. The periodic size of the proposed DLTV-EBG structure is 0.05λ1.65 GHz, which is a good candidate where compact size is highly desired.
Citation
Rajesh Bhagwanrao Morey, and Sunil Nilkanth Pawar, "Compact Double Layer Two via Electromagnetic Band Gap Structure for RCS Reduction," Progress In Electromagnetics Research Letters, Vol. 120, 89-93, 2024.
doi:10.2528/PIERL24022703
References

1. Li, Wen-Qiang, Xiangyu CAO, Jun GAO, Tao Liu, and Xu Yao, "Bionic antenna with low RCS for microstrip application," IEICE Proceedings Series, Vol. 53, No. FrP1-6, 2011.

2. Jiang, Wen, S.-X. Gong, Y.-P. Li, T. Hong, X. Wang, and L.-T. Jiang, "A novel low RCS mobius-band monopole antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1887-1895, 2009.

3. Hong, Tao, Shu-Xi Gong, Wen Jiang, Yun-Xue Xu, and Xing Wang, "A novel ultra-wide band antenna with reduced radar cross section," Progress In Electromagnetics Research, Vol. 96, 299-308, 2009.

4. Mosallaei, Hossein and Yahya Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1594-1606, 2000.

5. Wen, Qi-Ye, Huai-Wu Zhang, Yun-Song Xie, Qing-Hui Yang, and Ying-Li Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Applied Physics Letters, Vol. 95, No. 24, 241111, 2009.

6. Sokunbi, Oludayo and Hussein Attia, "Dual-layer dual-patch EBG structure for isolation enhancement and correlation reduction in MIMO antenna arrays," Progress In Electromagnetics Research C, Vol. 100, 233-245, 2020.

7. Chen, Wengang, Constantine A. Balanis, and Craig R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2636-2645, 2015.

8. Morey, Rajesh Bhagwanrao and Sunil N. Pawar, "Compact planer dual band circular shaped polarization-dependent electromagnetic band gap structure to reduce the RCS," Progress In Electromagnetics Research Letters, Vol. 110, 93-99, 2023.
doi:10.2528/PIERL23021803

9. Chen, Wengang, Constantine A. Balanis, and Craig R. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 4133-4138, 2016.

10. Shang, Yunlong, S. Xiao, M.-C. Tang, Y.-Y. Bai, and B. Wang, "Radar cross-section reduction for a microstrip patch antenna using PIN diodes," IET Microwaves, Antennas & Propagation, Vol. 6, No. 6, 670-679, 2012.

11. Jiang, Tao, Tianqi Jiao, and Yingsong Li, "A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures," Applied Computational Electromagnetics Society Journal, Vol. 33, No. 3, 305-311, 2018.

12. Azarbar, A. and J. Ghalibafan, "A compact low-permittivity dual-layer EBG structure for mutual coupling reduction," International Journal of Antennas and Propagation, Vol. 2011, 2011.

13. Sokunbi, Oludayo and Hussein Attia, "Dual-layer dual-patch EBG structure for isolation enhancement and correlation reduction in MIMO antenna arrays," Progress In Electromagnetics Research C, Vol. 100, 233-245, 2020.

14. Yang, Fan and Yahya Rahmat-Samii, "Polarization-dependent electromagnetic band gap (PDEBG) structures: Designs and applications," Microwave and Optical Technology Letters, Vol. 41, No. 6, 439-444, 2004.

15. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarization-dependent using artificial ground structure with rectangular unit cells," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2103-2110, 2011.
doi:10.1109/TAP.2011.2143656

16. Cheng, Chunxia and Liyan Luo, "Mutual coupling reduction using improved dual-layer mushroom and E-shaped stub," International Journal of Antennas and Propagation, Vol. 2021, 1-9, Feb. 2021.

17. Jun, Sung Yun, Benito Sanz Izquierdo, and Edward A. Parker, "Liquid sensor/detector using an EBG structure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3366-3373, May 2019.

18. Arif, Ali, Amna Zubair, Kashif Riaz, Muhammad Qasim Mehmood, and Muhammad Zubair, "A novel Cesaro fractal EBG-based sensing platform for dielectric characterization of liquids," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2887-2895, May 2021.

19. Park, Jongbae, Albert Chee W. Lu, Kai M. Chua, Lai L. Wai, Junho Lee, and Joungho Kim, "Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP applications," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 9, 481-483, 2006.

20. Dey, Soumik, Sukomal Dey, and Shiban K. Koul, "Isolation improvement of MIMO antenna using novel EBG and hair-pin shaped DGS at 5G millimeter wave band," IEEE Access, Vol. 9, 162820-162834, Dec. 2021.

21. Mavridou, Marina, Alexandros P. Feresidis, and Peter Gardner, "Tunable double-layer EBG structures and application to antenna isolation," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 70-79, Jan. 2016.

22. Huh, Suzanne Lynn and Madhavan Swaminathan, "A design technique for embedded electromagnetic band gap structure in load board applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 443-456, Apr. 2012.

23. Yang, Fan and Yahya Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.

24. Bhavarthe, Pramod P., Surendra S. Rathod, and Kuraparthi T. V. Reddy, "A compact two-via hammer spanner-type polarization-dependent electromagnetic bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 4, 284-286, 2018.

25. Parvathi, Kompella S. L. and Sudha R. Gupta, "Novel dual-band EBG structure to reduce mutual coupling of air gap based MIMO antenna for 5G application," AEU --- International Journal of Electronics and Communications, Vol. 138, 153902, 2021.

26. Yang, Fan and Yahya Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press Cambridge, Uk, 2009.