Vol. 126
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-24
UHF-Band Solid Sensor Based on Tweaking Electric Field Coupled Resonator for Material Characterization
By
Progress In Electromagnetics Research M, Vol. 126, 11-18, 2024
Abstract
This paper proposes a UHF-band microwave sensor for solid material detection based on a tweaking electric field coupled (ELC) resonator. The microwave sensor operates at a low resonant frequency of 0.82 GHz to characterize solid materials with a permittivity range of 1-9.8. The location of the sensing area is determined based on the surface of the resonator with the highest electric field. The permittivity of the sample is determined based on perturbation theory by observing the frequency shift relative to changes in the permittivity of the sample placed in the sensing area of the proposed sensor. From the measurement process, the proposed sensor has a normalized sensitivity (NS) of 1.49%, frequency detection resolution (FDR) of 0.012 GHz, and an average accuracy of 96.72%. This work has a significant contribution and can be recommended for several applications including the pharmaceutical, biomedical, and materials industries.
Citation
Syah Alam, Indra Surjati, Lydia Sari, Yuli Kurnia Ningsih, Munanda Yorias Fathanah, Yessi Kartini Gultom, Ghathfan Daffin, Teguh Firmansyah, and Zahriladha Zakaria, "UHF-Band Solid Sensor Based on Tweaking Electric Field Coupled Resonator for Material Characterization," Progress In Electromagnetics Research M, Vol. 126, 11-18, 2024.
doi:10.2528/PIERM24020201
References

1. Karimi, Muhammad Akram, Muhammad Arsalan, and Atif Shamim, "Multi-channel, microwave-based, compact printed sensor for simultaneous and independent level measurement of eight liquids," IEEE Sensors Journal, Vol. 19, No. 14, 5611-5620, 2019.

2. Mohd Bahar, Amyrul Azuan, Z. Zakaria, M. K. Md. Arshad, A. A. M. Isa, Y. Dasril, and Rammah A. Alahnomi, "Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection," Scientific Reports, Vol. 9, No. 1, 5467, 2019.

3. Ebrahimi, Amir, James Scott, and Kamran Ghorbani, "Differential sensors using microstrip lines loaded with two split-ring resonators," IEEE Sensors Journal, Vol. 18, No. 14, 5786-5793, 2018.

4. Yeo, Junho and Jong-Ig Lee, "High-sensitivity microwave sensor based on an interdigital-capacitor-shaped defected ground structure for permittivity characterization," Sensors, Vol. 19, No. 3, 498, 2019.
doi:10.3390/s19030498

5. Baghelani, Masoud, Zahra Abbasi, and Mojgan Daneshmand, "Noncontact high sensitivity chipless tag microwave resonator for bitumen concentration measurement at high temperatures," Fuel, Vol. 265, 116916, 2020.

6. Armghan, Ammar, Turki M. Alanazi, Ahsan Altaf, and Tanveerul Haq, "Characterization of dielectric substrates using dual band microwave sensor," IEEE Access, Vol. 9, 62779-62787, 2021.

7. Morales-Lovera, Hector-Noel, Jose-Luis Olvera-Cervantes, Aldo-Eleazar Perez-Ramos, Alonso Corona-Chavez, and Carlos E. Saavedra, "Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques," Scientific Reports, Vol. 12, No. 1, 2205, 2022.

8. Lobato-Morales, Humberto, Alonso Corona-Chávez, José Luis Olvera-Cervantes, Ricardo Arturo Chávez-Pérez, and José Luis Medina-Monroy, "Wireless sensing of complex dielectric permittivity of liquids based on the RFID," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 2160-2167, 2014.
doi:10.1109/TMTT.2014.2333711

9. Al-Behadili, Amer Abbood, Iulia Andreea Mocanu, Norocel Codreanu, and Mihaela Pantazica, "Modified split ring resonators sensor for accurate complex permittivity measurements of solid dielectrics," Sensors, Vol. 20, No. 23, 6855, 2020.
doi:10.3390/s20236855

10. Alam, Syah, Zahriladha Zakaria, Indra Surjati, Noor Azwan Shairi, Mudrik Alaydrus, and Teguh Firmansyah, "Multifunctional of dual-band permittivity sensors with antenna using multicascode T-shaped resonators for simultaneous measurement of solid materials and data transfer capabilities," Measurement, Vol. 217, 113078, 2023.

11. Piekarz, Ilona, Krzysztof Wincza, Slawomir Gruszczynski, and Jakub Sorocki, "Detection of methanol contamination in ethyl alcohol employing a purpose-designed high-sensitivity microwave sensor," Measurement, Vol. 174, 108993, 2021.

12. Kiani, Sina, Pejman Rezaei, and Mina Fakhr, "Real-time measurement of liquid permittivity through label-free meandered microwave sensor," IETE Journal of Research, 1-11, 2023.

13. Alahnomi, Rammah Ali, Zahriladha Zakaria, Zulkalnain Mohd Yussof, Ayman Abdulhadi Althuwayb, Ammar Alhegazi, Hussein Alsariera, and Norhanani Abd Rahman, "Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions," Sensors, Vol. 21, No. 7, 2267, 2021.
doi:10.3390/s21072267

14. Muñoz-Enano, Jonathan, Paris Vélez, Marta Gil, and Ferran Martín, "Planar microwave resonant sensors: A review and recent developments," Applied Sciences, Vol. 10, No. 7, 2615, 2020.
doi:10.3390/app10072615

15. Alahnomi, Rammah Ali, Zahriladha Zakaria, Eliyana Ruslan, Siti Rosmaniza Ab Rashid, and Amyrul Azuan Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," IEEE Sensors Journal, Vol. 17, No. 9, 2766-2775, 2017.

16. Behdani, Mahdi, Mohammad Mahdi Honari Kalateh, Hossein Saghlatoon, Jordan Melzer, and Rashid Mirzavand, "High-resolution dielectric constant measurement using a sensor antenna with an allocated link for data transmission," IEEE Sensors Journal, Vol. 20, No. 24, 14827-14835, 2020.

17. Alam, Syah, Zahriladha Zakaria, Indra Surjati, Noor Azwan Shairi, Mudrik Alaydrus, and Teguh Firmansyah, "Dual-band independent permittivity sensor using single-port with a pair of U-shaped structures for solid material detection," IEEE Sensors Journal, Vol. 22, No. 16, 16111-16119, 2022.

18. Massoni, Enrico, Giuseppe Siciliano, Maurizio Bozzi, and Luca Perregrini, "Enhanced cavity sensor in SIW technology for material characterization," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, 948-950, 2018.

19. Salim, Ahmed and Sungjoon Lim, "TM02 quarter-mode substrate-integrated waveguide resonator for dual detection of chemicals," Sensors, Vol. 18, No. 6, 1964, 2018.
doi:10.3390/s18061964

20. Boybay, Muhammed Said and Omar M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, 3039-3046, 2012.

21. Wang, Cong, Luqman Ali, Fan-Yi Meng, Kishor Kumar Adhikari, Zhong Liang Zhou, Yu Chen Wei, Dan Qing Zou, and He Yu, "High-accuracy complex permittivity characterization of solid materials using parallel interdigital capacitor-based planar microwave sensor," IEEE Sensors Journal, Vol. 21, No. 5, 6083-6093, 2021.

22. Rahman, Norhanani Abd, Zahriladha Zakaria, Rosemizi Abd Rahim, Maizatul Alice Meor Said, Amyrul Azuan Mohd Bahar, Rammah A. Alahnomi, and Ammar Alhegazi, "High quality factor using nested complementary split ring resonator for dielectric properties of solids sample," The Applied Computational Electromagnetics Society Journal, Vol. 35, No. 10, 1222-1227, 2020.
doi:10.47037/2020.ACES.J.351016

23. Abdulkarim, Yadgar I., Lianwen Deng, Muharrem Karaaslan, et al. "Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line," Sensors, Vol. 20, No. 3, 943, 2020.
doi:10.3390/s20030943

24. Mohd Bahar, Amyrul Azuan, Z. Zakaria, S. R. Ab Rashid, A. A. M. Isa, and Rammah A. Alahnomi, "High-efficiency microwave planar resonator sensor based on bridge split ring topology," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 6, 545-547, 2017.

25. Bakır, Mehmet, Muharrem Karaaslan, Emin Unal, Faruk Karadag, Fatih Özkan Alkurt, Olcay Altıntaş, Sekip Dalgac, and Cumali Sabah, "Microfluidic and fuel adulteration sensing by using chiral metamaterial sensor," Journal of the Electrochemical Society, Vol. 165, No. 11, B475-B483, 2018.
doi:10.1149/2.0231811jes

26. Meyne, Nora, Grischa Fuge, An-Ping Zeng, and Arne F. Jacob, "Resonant microwave sensors for picoliter liquid characterization and nondestructive detection of single biological cells," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 1, No. 2, 98-104, 2017.