Vol. 126
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-04-23
Dispersion and Eigenvector Error Analysis of Simplicial Cubic Hermite Elements for 1-d and 2-d Wave Propagation Problems
By
Progress In Electromagnetics Research M, Vol. 126, 147-155, 2024
Abstract
Dispersion error analysis can help to assess the performance of finite-element discretizations of the wave equation. Although less general than the convergence estimates offered by standard finite-element error analysis, it can provide more detailed insight as well as practical guidelines in terms of the number of elements per wavelength needed for acceptable results. We present eigenvalue and eigenvector error estimates for cubic Hermite elements on an equidistant 1-D mesh and on a regular structured 2-D triangular mesh consisting of squares cut in half. The results show that in 1D, the spectrum consists of 2 modes. If these are unwrapped, the spectrum is effectively doubled. The eigenvalue or dispersion error stays below 7% across the entire spectrum. The error in the corresponding eigenvectors, however, increases rapidly once the number of elements per wavelength decreases to one. In terms of element size, the dispersion error is of order 6 and the eigenvector error of order 4. The latter is consistent with the classic finite-element error estimate. In 2D, we provide eigenvalue and eigenvector errors as a series expansion in the element size and obtain the same orders. 2-D numerical tests in the timeand frequency-domain are included.
Citation
William Alexander Mulder, and Ranjani Shamasundar, "Dispersion and Eigenvector Error Analysis of Simplicial Cubic Hermite Elements for 1-d and 2-d Wave Propagation Problems," Progress In Electromagnetics Research M, Vol. 126, 147-155, 2024.
doi:10.2528/PIERM24011601
References

1. Mulder, W. A., "A comparison between higher-order finite elements and finite differences for solving the wave equation," Proceedings of the Second ECCOMAS Conference on Numerical Methods in Engineering, 344-350, 1996.

2. Zhebel, Elena, Sara Minisini, Alexey Kononov, and Wim A. Mulder, "A comparison of continuous mass‐lumped finite elements with finite differences for 3‐D wave propagation," Geophysical Prospecting, Vol. 62, No. 5, 1111-1125, 2014.

3. Geevers, Sjoerd, Wim A. Mulder, and Jaap J. W. van der Vegt, "Dispersion properties of explicit finite element methods for wave propagation modelling on tetrahedral meshes," Journal of Scientific Computing, Vol. 77, No. 1, 372-396, Oct. 2018.

4. Geevers, Sjoerd, Wim A. Mulder, and Jaap J. W. van der Vegt, "New higher-order mass-lumped tetrahedral elements for wave propagation modelling," SIAM Journal on Scientific Computing, Vol. 40, No. 5, A2830-A2857, 2018.

5. Geevers, Sjoerd, Wim A. Mulder, and Jaap J. W. van der Vegt, "Efficient quadrature rules for computing the stiffness matrices of mass-lumped tetrahedral elements for linear wave problems," SIAM Journal on Scientific Computing, Vol. 41, No. 2, A1041-A1065, 2019.

6. Mulder, W. A., "Performance of old and new mass-lumped triangular finite elements for wavefield modelling," Geophysical Prospecting, Vol. 72, No. 3, 885-896, 2024.

7. Mulder, W. A., "Spurious modes in finite-element discretizations of the wave equation may not be all that bad," Applied Numerical Mathematics, Vol. 30, No. 4, 425-445, 1999.

8. Ciarlet, Philippe G. and Pierre-Arnaud Raviart, "General Lagrange and Hermite interpolation in Rn with applications to finite element methods," Archive for Rational Mechanics and Analysis, Vol. 46, No. 3, 177-199, Jan. 1972.

9. Tordjman, N., "Eléments finis d'ordre élevé avec condensation de masse pour l'équation des ondes," Ph.D. dissertation, L’Université Paris IX Dauphine, France, 1995.

10. Cohen, Gary, Patrick Joly, Jean E. Roberts, and Nathalie Tordjman, "Higher order triangular finite elements with mass lumping for the wave equation," SIAM Journal on Numerical Analysis, Vol. 38, No. 6, 2047-2078, 2001.

11. Chin-Joe-Kong, M. J. S., Wim A. Mulder, and M. van Veldhuizen, "Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation," Journal of Engineering Mathematics, Vol. 35, 405-426, 1999.

12. Cohen, Gary, Patrick Joly, Jean E. Roberts, and Nathalie Tordjman, "Higher order triangular finite elements with mass lumping for the wave equation," SIAM Journal on Numerical Analysis, Vol. 38, No. 6, 2047-2078, 2001.

13. Mulder, Wim A., "Higher-order mass-lumped finite elements for the wave equation," Journal of Computational Acoustics, Vol. 9, No. 2, 671-680, 2001.

14. Mulder, William Alexander, "New triangular mass-lumped finite elements of degree six for wave propagation," Progress In Electromagnetics Research, Vol. 141, 671-692, 2013.

15. Cui, Tao, Wei Leng, Deng Lin, Shichao Ma, and Linbo Zhang, "High order mass-lumping finite elements on simplexes," Numerical Mathematics: Theory, Methods and Applications, Vol. 10, No. 2, 331-350, 2017.

16. Liu, Youshan, Jiwen Teng, Tao Xu, and José Badal, "Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling," Journal of Computational Physics, Vol. 336, 458-480, 2017.

17. Mulder, Wim A., "More continuous mass-lumped triangular finite elements," Journal of Scientific Computing, Vol. 92, No. 2, 38, 2022.

18. Felippa, C. A., "Customizing high performance elements by Fourier methods," Trends in Computational Structural Mechanics, 283-296, W. A. Wall, K.-U. Bletzinger, and K. Schweizerhof, Eds., CIMNE, Barcelona, Spain, 2001.

19. Park, K. C. and D. L. Flaggs, "A Fourier analysis of spurious mechanisms and locking in the finite element method," Computer Methods in Applied Mechanics and Engineering, Vol. 46, No. 1, 65-81, 1984.

20. Mullen, Robert and Ted Belytschko, "Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation," International Journal for Numerical Methods in Engineering, Vol. 18, No. 1, 11-29, 1982.

21. Cottrell, J. Austin, Alessandro Reali, Yuri Bazilevs, and Thomas J. R. Hughes, "Isogeometric analysis of structural vibrations," Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 41, 5257-5296, 2006.

22. Boucher, C. R., Zehao Li, C. I. Ahheng, J. D. Albrecht, and L. R. Ram-Mohan, "Hermite finite elements for high accuracy electromagnetic field calculations: A case study of homogeneous and inhomogeneous waveguides," Journal of Applied Physics, Vol. 119, No. 14, 143106, 2016.

23. Shamasundar, Ranjani, "Finite element methods for seismic imaging: Cost reduction through mass matrix preconditioning by defect correction," Delft University of Technology, The Netherlands, 2019.

24. Strang, G. and G. J. Fix, An Analysis of the Finite Element Method, ser. Series in Automatic Computation, XIV, Prentice-Hall, Inc., Englewood Cliffs, NY, 1973.

25. Davis, T. A., Direct Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2006.
doi:10.1137/1.9780898718881

26. Wu, Jo-Yu and Robert Lee, "The advantages of triangular and tetrahedral edge elements for electromagnetic modeling with the finite-element method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1431-1437, 1997.
doi:10.1109/5.317086

27. Mulder, W. A., E. Zhebel, and S. Minisini, "Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation," Geophysical Journal International, Vol. 196, No. 2, 1123-1133, 2014.

28. Engwirda, Darren, "Locally optimal Delaunay-refinement and optimisation-based mesh generation," The University of Sydney, Australia, 2014.