Vol. 125
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-22
An Optimization of Subarrayed Planar Array Pattern via Fractal Structure Thinning
By
Progress In Electromagnetics Research M, Vol. 125, 127-134, 2024
Abstract
Dividing large planar arrays into several subarrays and then turning off some of them reduces the complexity (cost) of the system significantly. In this paper, two optimization stages for the formation of planar subarrays and the removal of some of them are proposed. The first optimization stage improves the pattern of the original planar array after dividing it into a set of rotational square and rectangular subarrays. In the second optimization stage, it works to remove some of the subarrays completely or partially, depending on new fractal structures derived from the conventional Sierpinski carpet structure. The proposed fractal-thinned planar array is based on amplitude-only excitation, i.e. the phases of the elements are set to zero. To execute the optimization steps above, a genetic algorithm (GA) is used. Some determinants are included in the optimization process to maintain the properties of the desired pattern. Simulation results showed the effectiveness of the proposed optimization method in achieving almost the same performance in both stages of optimization.
Citation
Ahmed Jameel Abdulqader, "An Optimization of Subarrayed Planar Array Pattern via Fractal Structure Thinning," Progress In Electromagnetics Research M, Vol. 125, 127-134, 2024.
doi:10.2528/PIERM24011206
References

1. Visser, Hubregt J., Array and Phased Array Antenna Basics, John Wiley & Sons, 2005.
doi:10.1002/0470871199

2. Mailloux, R. J., S. G. Santarelli, T. M. Roberts, and D. Luu, "Irregular polyomino-shaped subarrays for space-based active arrays," International Journal of Antennas and Propagation, Vol. 2009, 9, 2009.
doi:10.1155/2009/956524

3. Wang, Hao, Da-Gang Fang, and Y. Leonard Chow, "Grating lobe reduction in a phased array of limited scanning," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1581-1586, Jun. 2008.
doi:10.1109/TAP.2008.923354

4. Abdulqader, Ahmed Jameel, Jafar Ramadhan Mohammed, and Yessar E. Mohammad Ali, "Beam pattern optimization via unequal ascending clusters," Journal of Telecommunications and Information Technology, Vol. 1, 1-7, 2023.

5. Mohammed, Jafar Ramadhan, Ahmed Jameel Abdulqader, and Raad H. Thaher, "Array pattern recovery under amplitude excitation errors using clustered elements," Progress In Electromagnetics Research M, Vol. 98, 183-192, 2020.
doi:10.2528/PIERM20101906

6. Gregory, Micah D., Frank A. Namin, and Douglas H. Werner, "Exploiting rotational symmetry for the design of ultra-wideband planar phased array layouts," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 176-184, Jan. 2013.
doi:10.1109/TAP.2012.2220107

7. Abdulqader, Ahmed Jameel, "Low complexity irregular clusters tiling through quarter region rotational symmetry," Progress In Electromagnetics Research C, Vol. 137, 81-92, 2023.
doi:10.2528/PIERC23040604

8. Haupt, Randy L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1207-1210, Apr. 2007.
doi:10.1109/TAP.2007.893406

9. Isernia, T., M. D'Urso, and O. M. Bucci, "A simple idea for an effective sub-arraying of large planar sources," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 169-172, 2009.
doi:10.1109/LAWP.2008.2000943

10. Ahmed, J. A., R. M. Jafar, and H. T. Raad, "Unconventional and irregular clustered arrays," 1st International Ninevah Conference on Engineering and Technology (INCET2021), Ninevah, Mosul, 2021.

11. Abdulqader, Ahmed Jameel, Jafar Ramadhan Mohammed, and Yaser Ahmed Ali, "A T-shaped polyomino subarray design method for controlling sidelobe level," Progress In Electromagnetics Research C, Vol. 126, 243-251, 2022.

12. Jeong, Taeyong, Juho Yun, Kyunghyun Oh, Jihyung Kim, Dae Woong Woo, and Keum Cheol Hwang, "Shape and weighting optimization of a subarray for an mm-Wave phased array antenna," Applied Sciences, Vol. 11, No. 15, 6803, 2021.
doi:10.3390/app11156803

13. Xiong, Zi-Yuan, Zhen-Hai Xu, Si-Wei Chen, and Shun-Ping Xiao, "Subarray partition in array antenna based on the algorithm X," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 906-909, 2013.
doi:10.1109/LAWP.2013.2272793

14. El-Khamy, Said E., Huda F. El-Sayed, and Ahmed S. Eltrass, "A new adaptive beamforming of multiband fractal antenna array in strong-jamming environment," Wireless Personal Communications, Vol. 126, No. 1, 285-304, Sep. 2022.
doi:10.1007/s11277-022-09745-4

15. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-59, Oct. 1999.
doi:10.1109/74.801513

16. Abdulqader, Ahmed Jameel, Jafar Ramadhan Mohammed, and Raad H. Thaher, "Phase-only nulling with limited number of controllable elements," Progress In Electromagnetics Research C, Vol. 99, 167-178, 2020.

17. Abdulqader, Ahmed Jameel and Jafar Ramadhan Mohammed, "New improved Sierpinski carpet structures based thinned planar array to synthesize low sidelobes radiation pattern," 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 178-183, Bandung, Indonesia, 2023.

18. Haupt, Randy L. and Douglas H. Werner, Genetic Algorithms in Electromagnetics, John Wiley & Sons, IEEE Press, 2007.
doi:10.1002/047010628X

19. Brown, Arik D., Electronically Scanned Arrays MATLAB® Modeling and Simulation, CRC Press, 2017.
doi:10.1201/b12044

20. Karmakar, Anirban, Rowdra Ghatak, R. K. Mishra, and D. R. Poddar, "Sierpinski carpet fractal-based planar array optimization based on differential evolution algorithm," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 2, 247-260, Jan. 2015.
doi:10.1080/09205071.2014.997837