Vol. 118
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-02-29
Millimeter-Wave Dual-Frequency Dual-Polarized Circular Airy OAM Beams by Tensor Holographic Impedance Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 118, 27-31, 2024
Abstract
In this paper, analytical formulas for tensor holographic impedance metasurface (THIMS) are presented to generate circularly polarized (CP) circular Airy orbital angular momentum (OAM) multibeams with flexibly independent control of the beam direction, polarization and OAM mode. As an example, a millimeter-wave THIMS is designed to generate CP circular Airy OAM dual beams: Beam-I: (θ1 = 0, φ1 = 0, LHCP, l = +1, 36 GHz), Beam-II: (θ2 = 0, φ2 = 0, RHCP, l = 0, 30 GHz). To the knowledge of the authors, for the first time, the THIMS generates circular Airy beams. Compared with the published metasurface on Airy beam, the created THIMS has the following advantages simultaneously: dual frequencies, dual CP, small size 30λ0 at 30 GHz, high conversion efficiency (CE) (above 40%), long nondiffractive distance (ND) (up to 134.4λ0), high OAM purity (above 89%), co-modulation for polarization, beam direction and OAM mode. The generated circular Airy OAM beams can be used in near-field scenarios such as high-efficiency wireless power transmission (WPT), high-capacity communication systems, and high-resolution imaging.
Citation
Hui-Fen Huang, and Yingjing Ma, "Millimeter-Wave Dual-Frequency Dual-Polarized Circular Airy OAM Beams by Tensor Holographic Impedance Metasurface," Progress In Electromagnetics Research Letters, Vol. 118, 27-31, 2024.
doi:10.2528/PIERL24010307
References

1. Efremidis, Nikolaos K. and Demetrios N. Christodoulides, "Abruptly autofocusing waves," Optics Letters, Vol. 35, No. 23, 4045-4047, Dec. 2010.
doi:10.1364/OL.35.004045

2. Mohanty, Kaustav, Siddharth Mahajan, Gianmarco Pinton, Marie Muller, and Yun Jing, "Observation of self-bending and focused ultrasound beams in the megahertz range," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 65, No. 8, 1460-1467, Aug. 2018.
doi:10.1109/TUFFC.2018.2841341

3. Panagiotopoulos, P., D. G. Papazoglou, A. Couairon, and S. Tzortzakis, "Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets," Nature Communications, Vol. 4, No. 1, 2622, Oct. 2013.
doi:10.1038/ncomms3622

4. Li, Jiu-Sheng and Min Zhong, "Airy beam multifunctional terahertz metasurface," IEEE Photonics Technology Letters, Vol. 35, No. 5, 245-248, Mar. 2023.
doi:10.1109/LPT.2023.3234062

5. Zhao, Zihan, Xumin Ding, Kuang Zhang, Jiahui Fu, and Qun Wu, "2-D Airy beam generation and manipulation utilizing metasurface," IEEE Transactions on Magnetics, Vol. 58, No. 2, 1-5, Feb. 2022.
doi:10.1109/TMAG.2021.3090259

6. Casaletti, Massimiliano, Maciej Śmierzchalski, Mauro Ettorre, Ronan Sauleau, and Nicolas Capet, "Polarized beams using scalar metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3391-3400, Aug. 2016.
doi:10.1109/TAP.2016.2570251

7. Faenzi, Marco, Gabriele Minatti, David González-Ovejero, Francesco Caminita, Enrica Martini, Cristian Della Giovampaola, and Stefano Maci, "Metasurface antennas: New models, applications and realizations," Scientific Reports, Vol. 9, 10178, 2019.
doi:10.1038/s41598-019-46522-z

8. Ding, Xumin, Zhuochao Wang, Guangwei Hu, Jian Liu, Kuang Zhang, Haoyu Li, Badreddine Ratni, Shah Nawaz Burokur, Qun Wu, Jiubin Tan, and Cheng-Wei Qiu, "Metasurface holographic image projection based on mathematical properties of Fourier transform," PhotoniX, Vol. 1, 16, Jun. 2020.
doi:10.1186/s43074-020-00016-8

9. Meng, Xiangshuai, Jiaji Wu, Zhensen Wu, Tan Qu, and Lin Yang, "Generating dual-polarization beams carrying dual orbital angular momentum modes based on anisotropic holographic metasurfaces," Journal of Physics D: Applied Physics, Vol. 52, No. 30, 305002, Nov. 2019.
doi:10.1088/1361-6463/ab1e29

10. Emamian, Hedieh, Homayoon Oraizi, and Mohammad Moein Moeini, "Design of wide-band dual-beam leaky-wave antenna using the holographic theory," 2019 27th Iranian Conference on Electrical Engineering (ICEE), 1456-1460, Yazd, Iran, 2019.
doi:10.1109/iraniancee.2019.8786404

11. Fong, Bryan H., Joseph S. Colburn, John J. Ottusch, John L. Visher, and Daniel F. Sievenpiper, "Scalar and tensor holographic artificial impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3212-3221, Oct. 2010.
doi:10.1109/TAP.2010.2055812

12. Faeghi, Pouya, Changiz Ghobadi, Javad Nourinia, and Bal Virdee, "Nanoparticle-coated Vivaldi antenna array for gain enhancement," Applied Physics A, Vol. 129, No. 3, 217, Mar. 2023.
doi:10.1007/s00339-023-06505-4

13. Kadlimatti, Ravi and Patanjali V. Parimi, "Millimeter-wave nondiffracting circular Airy OAM beams," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 260-269, Jan. 2019.

14. Miao, Zhuo-Wei, Zhang-Cheng Hao, Biao-Bing Jin, and Zhi Ning Chen, "Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1503-1513, Mar. 2020.
doi:10.1109/TAP.2019.2925290

15. Huang, Yongjun, Jian Li, He-Xiu Xu, Hualong Yu, Zhao Yang, Peng Yu, Wei Hu, Daniele Inserra, and Guangjun Wen, "Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7507-7516, Nov. 2020.
doi:10.1109/TAP.2020.2996826

16. Huang, Yuhan, Xiuping Li, Zaid Akram, Hua Zhu, and Zihang Qi, "Generation of millimeter-wave nondiffracting Airy OAM beam using a single-layer hexagonal lattice reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 1093-1097, Jun. 2021.
doi:10.1109/LAWP.2021.3073144

17. Yu, Shixing, Haixia Liu, and Long Li, "Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics," IEEE Transactions on Industrial Electronics, Vol. 66, No. 5, 3993-4002, 2018.