Vol. 118
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-14
Design of an Octave-Multimode Hybrid Broadband High-Efficiency Power Amplifier
By
Progress In Electromagnetics Research Letters, Vol. 118, 63-69, 2024
Abstract
This paper discusses the challenges faced by existing power amplifier configurations in meeting the bandwidth requirements of modern communication technology while maintaining high efficiency due to the overlap of fundamental and harmonic frequencies. To address this issue, the paper proposes a matching method based on mode combination theory that utilizes the overlap of harmonic and fundamental impedance to simplify the design of broadband amplifiers. In this paper, a Chebyshev low-pass filter is used to control the higher harmonics instead of the conventional quarter-wavelength harmonic control network with a combination of harmonic impedances. The proposed method combines three modes of Resistive-Reactive class F-1, class J, and class F power amplifiers, which can achieve high efficiency and octave frequency at the same time. The paper verifies the proposed method by designing and fabricating a multi-multiplier power amplifier with a drain efficiency of 61.8-73.9%, an operating bandwidth of 1.4-2.9 GHz, and a saturation output of 41.1-42.3 dBm. The amplifier also has a gain greater than 11.1-12.3 dBm, and at an output power of 36 dBm, the ACPR value is -32 to -33.1 dBc across the band.
Citation
Zuqiang Zhang, Shiwei Zhao, Linsong Li, Longfei Zhou, Fei Zhao, and Jialin Li, "Design of an Octave-Multimode Hybrid Broadband High-Efficiency Power Amplifier," Progress In Electromagnetics Research Letters, Vol. 118, 63-69, 2024.
doi:10.2528/PIERL24010304
References

1. Feng, Wenjie, Wenbin Wu, Xin Yu Zhou, Wenquan Che, and Yongrong Shi, "Broadband high-efficiency quasi-class-J power amplifier based on nonlinear output capacitance effect," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 4, 2091-2095, Apr. 2022.
doi:10.1109/TCSII.2022.3141423

2. Sharma, Tushar, Ramzi Darraji, Fadhel Ghannouchi, and Neha Dawar, "Generalized continuous class-F harmonic tuned power amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 3, 213-215, Mar. 2016.
doi:10.1109/LMWC.2016.2524989

3. Shi, Weimin, Songbai He, and Qirong Li, "A series of inverse continuous modes for designing broadband power amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 7, 525-527, Jul. 2016.
doi:10.1109/LMWC.2016.2574820

4. Dong, Yezi, Luhong Mao, and Sheng Xie, "Extended continuous inverse class-F power amplifiers with class-AB bias conditions," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 4, 368-370, Apr. 2017.
doi:10.1109/LMWC.2017.2678433

5. Yang, Zhenxing, Yao Yao, Mingyu Li, Yi Jin, Tian Li, Zhen Geng, and Zhiqiang Yu, "A precise harmonic control technique for high efficiency concurrent dual-band continuous Class-F power amplifier," IEEE Access, Vol. 6, 51864-51874, 2018.
doi:10.1109/ACCESS.2018.2870865

6. Wright, Peter, Jonathan Lees, Johannes Benedikt, Paul J. Tasker, and Steve C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 3196-3204, Dec. 2009.
doi:10.1109/TMTT.2009.2033295

7. Tubitak, Engin Cagdas, Osman Palamutcuogullan, Oguzhan Kiztlbey Tubitak, B. Siddik Yarman, and Metin Yazgi, "High efficiency wideband power amplifier with class-J configuration," 2018 18th Mediterranean Microwave Symposium (MMS), 394-397, Istanbul, Turkey, 2018.

8. Chen, Xiaofan, Wenhua Chen, Fadhel M. Ghannouchi, Zhenghe Feng, and Yuanan Liu, "A broadband doherty power amplifier based on continuous-mode technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4505-4517, Dec. 2016.
doi:10.1109/TMTT.2016.2623705

9. Amirpour, Raul, Ramzi Darraji, Fadhel Ghannouchi, and Ruediger Quay, "Enhancement of the broadband efficiency of a class-J power amplifier with varactor-based dynamic load modulation," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 2, 180-182, Feb. 2017.
doi:10.1109/LMWC.2016.2646905

10. Liu, Guohua, Cantianci Guo, Zhiqun Cheng, Zhiwei Zhang, Guoxiang Zhou, and Wenlai Zhao, "A broadband class‐F/J hybrid power amplifier," Microwave and Optical Technology Letters, Vol. 62, No. 7, 2518-2524, Jul. 2020.
doi:10.1002/mop.32358

11. Moon, Junghwan, Seunghoon Jee, Jungjoon Kim, Jangheon Kim, and Bumman Kim, "Behaviors of class-F and class-F -1 amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1937-1951, Jun. 2012.
doi:10.1109/TMTT.2012.2190749

12. Tong, Renbin, Songbai He, Bohai Zhang, Zhongpo Jiang, Xianyun Hou, and Fei You, "A novel topology of matching network for realizing broadband high efficiency continuous class-F power amplifiers," 2013 European Microwave Integrated Circuit Conference, 1475-1478, Nuremberg, Germany, Oct. 2013.

13. Kim, Kyeongjin and Hojong Choi, "High-efficiency high-voltage class F amplifier for high-frequency wireless ultrasound systems," PLoS One, Vol. 16, No. 3, e0249034, Mar. 2021.
doi:10.1371/journal.pone.0249034

14. Carrubba, Vincenzo, Muhammad Akmal, Rüdiger Quay, Jonathan Lees, Johannes Benedikt, Steve C. Cripps, and Paul J. Tasker, "The continuous inverse class-F mode with resistive second-harmonic impedance," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1928-1936, Jun. 2012.
doi:10.1109/TMTT.2012.2189228

15. Friesicke, Christian, Rüdiger Quay, and Arne F. Jacob, "The resistive-reactive class-J power amplifier mode," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 10, 666-668, Oct. 2015.
doi:10.1109/LMWC.2015.2463211

16. Zheng, Shao Yong, Zhao Wu Liu, Xiu Yin Zhang, Xin Yu Zhou, and Wing Shing Chan, "Design of ultrawideband high-efficiency extended continuous class-F power amplifier," IEEE Transactions on Industrial Electronics, Vol. 65, No. 6, 4661-4669, Jun. 2018.
doi:10.1109/TIE.2017.2772163

17. Tang, Qing-Hua, Yang-Hua Li, and Wen-Guang Li, "Over second octave power amplifier design based on resistive–resistive series of continuous class-F/F−1 modes," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 494-496, May 2017.
doi:10.1109/LMWC.2017.2690847

18. Chen, Kenle and Dimitrios Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3162-3173, Dec. 2011.
doi:10.1109/TMTT.2011.2169080

19. Chen, Kenle and Dimitrios Peroulis, "Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class-F-1/F mode transferring," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 12, 4107-4116, Dec. 2012.
doi:10.1109/TMTT.2012.2221142

20. Matthaei, G. L., "Tables of chebyshev impedance-transforming networks of low-pass filter form," Proceedings of the IEEE, Vol. 52, No. 8, 939-963, 1964.
doi:10.1109/PROC.1964.3185

21. Cristal, E. G., "Tables of maximally flat impedance-transforming networks of low-pass-filter form (correspondence)," IEEE Transactions on Microwave Theory and Techniques, Vol. 13, No. 5, 693-695, 1965.
doi:10.1109/TMTT.1965.1126064

22. Fano, Robert M., "Theoretical limitations on the broadband matching of arbitrary impedances," Journal of the Franklin Institute, Vol. 249, No. 1, 57-83, 1950.

23. Dawson, Dale E., "Closed-form solutions for the design of optimum matching networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 1, 121-129, Jan. 2009.
doi:10.1109/TMTT.2008.2009041

24. Levy, R., "Explicit formulas for Chebyshev impedance-matching networks, filters and interstages," Proceedings of the Institution of Electrical Engineers, Vol. 111, No. 6, 1099-1106, 1964.

25. Matthaei, G., "Synthesis of Tchebycheff impedance-matching networks, filters, and interstages," IRE Transactions on Circuit Theory, Vol. 3, No. 3, 163-172, 1956.

26. Matthaei, George L., "Design of wide-band (and narrow-band) band-pass microwave filters on the insertion loss basis," IRE Transactions on Microwave Theory and Techniques, Vol. 8, No. 6, 580-593, 1960.

27. Wright, Peter, Jonathan Lees, Johannes Benedikt, Paul J. Tasker, and Steve C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 3196-3204, Dec. 2009.
doi:10.1109/TMTT.2009.2033295

28. Cao, Haiying, Hossein Mashad Nemati, Ali Soltani Tehrani, Thomas Eriksson, Jan Grahn, and Christian Fager, "Linearization of efficiency-optimized dynamic load modulation transmitter architectures," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 4, 873-881, Apr. 2010.
doi:10.1109/TMTT.2010.2042654