Vol. 126
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-04-01
Metamaterials Photonic Filter Based on Electromagnetically Induced Transparency Resonance
By
Progress In Electromagnetics Research M, Vol. 126, 65-72, 2024
Abstract
In this paper, we give an analytical demonstration of electromagnetic induced transparency (EIT) resonance by a simple photonic device consisting of two grafted resonators (metamaterials of type Epsilon Negative Gauchy (ENG)) of lengths d2 and d3. Then, we study theoretically the transmission spectrum and the dispersion relation of periodic photonic comb-like waveguides system built of periodic segments of length d1 (of right-handed material). The electrical permittivity, ε, of the two asymmetric resonators with lengths d2 and d3, depends on the frequency of the incident waves (ENG material). The presence of geometrical (ENG resonators) defects inside the perfect structure creates the defect modes inside the band gaps. Consequently, we demonstrate the existence of two filtered frequencies. This structure can be used as a new photonic filter in the microwave range with an important quality factor and a high transmission rate.
Citation
Younes Errouas, Ilyass El Kadmiri, Youssef Ben-Ali, Abdelaziz Ouariach, and Driss Bria, "Metamaterials Photonic Filter Based on Electromagnetically Induced Transparency Resonance," Progress In Electromagnetics Research M, Vol. 126, 65-72, 2024.
doi:10.2528/PIERM23122803
References

1. Veselago, Viktor G., "Formulating Fermat's principle for light traveling in negative refraction materials," Physics-Uspekhi, Vol. 45, No. 10, 1097-1099, Oct. 2002.
doi:10.1070/PU2002v045n10ABEH001223

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, May 2000.
doi:10.1103/PhysRevLett.84.4184

3. Liang, Lanju, Biaobing Jin, Jingbo Wu, Yi Huang, Zhihui Ye, Xiaoming Huang, Dong Zhou, Guosheng Wang, Xiaoqing Jia, Hai Lu, Lin Kang, Weiwei Xu, Jian Chen, and Peiheng Wu, "A flexible wideband bandpass terahertz filter using multi-layer metamaterials," Applied Physics B, Vol. 113, No. 2, 285-290, 2013.
doi:10.1007/s00340-013-5470-x

4. Zhu, Zhihua, Xueqian Zhang, Jianqiang Gu, Ranjan Singh, Zhen Tian, Jiaguang Han, and Weili Zhang, "A metamaterial-based terahertz low-pass filter with low insertion loss and sharp rejection," IEEE Transactions on Terahertz Science and Technology, Vol. 3, No. 6, 832-837, Nov. 2013.
doi:10.1109/TTHZ.2013.2285342

5. Horestani, Ali K., Withawat Withayachumnankul, Abdallah Chahadih, Abbas Ghaddar, Mokhtar Zehar, Derek Abbott, Christophe Fumeaux, and Tahsin Akalin, "Metamaterial-inspired bandpass filters for terahertz surface waves on Goubau lines," IEEE Transactions on Terahertz Science and Technology, Vol. 3, No. 6, 851-858, Nov. 2013.
doi:10.1109/TTHZ.2013.2285556

6. Lin, Yu-Sheng, You Qian, Fusheng Ma, Zhen Liu, Piotr Kropelnicki, and Chengkuo Lee, "Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators," Applied Physics Letters, Vol. 102, No. 11, 111908, Mar. 2013.
doi:10.1063/1.4798244

7. Palikaras, G. and T. Kallos, U.S. Patent No. 10,698,143. Washington, DC: U.S. Patent and Trademark Office, 2020.

8. Rathore, Vaishali, Seema Awasthi, and Animesh Biswas, "Design of compact dual-band bandpass filter using frequency transformation and its implementation with split ring resonator dual-band bandpass filter using SRR," 2014 44th European Microwave Conference, 949-952, Rome, Italy, Oct. 2014.

9. Huang, Tsung-Yu and Ta-Jen Yen, "A high-ratio bandwidth square-wave-like bandpass filter by two-handed metamaterials and its application in 60 GHz wireless communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011.

10. Lu, Mingzhi, Wenzao Li, and Elliott R. Brown, "Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures," Optics Letters, Vol. 36, No. 7, 1071-1073, Apr. 2011.
doi:10.1364/OL.36.001071

11. Jindal, Swati and Jigyasa Sharma, "Review of metamaterials in microstrip technology for filter applications," International Journal of Computer Applications, Vol. 54, No. 3, 2012.

12. Jiang, Haitao, Hong Chen, Hongqiang Li, Yewen Zhang, and Shiyao Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials," Applied Physics Letters, Vol. 83, No. 26, 5386-5388, Dec. 2003.
doi:10.1063/1.1637452

13. Houck, Andrew A., Jeffrey B. Brock, and Isaac L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Physical Review Letters, Vol. 90, No. 13, 137401, Apr. 2003.
doi:10.1103/PhysRevLett.90.137401

14. Bria, D., B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. P. Vigneron, E. H. El Boudouti, and A. Nougaoui, "Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials," Physical Review E, Vol. 69, No. 6, 066613, Jun. 2004.
doi:10.1103/PhysRevE.69.066613

15. Essadqui, Abdelmajid, Jawad Ben-Ali, Driss Bria, Bahram Djafari-Rouhani, and Abdelkrim Nougaoui, "Photonic band structure of 1D periodic composite system with left handed and right handed materials by green function approach," Progress In Electromagnetics Research B, Vol. 23, 229-249, 2010.

16. Ben-Ali, Youssef, Zakaria Tahri, and Driss Bria, "Electromagnetic filters based on a single negative photonic comb-like structure," Progress In Electromagnetics Research C, Vol. 92, 41-56, 2019.

17. Zhang, Liwei, Zhiguo Wang, Hong Chen, Hongqiang Li, and Yewen Zhang, "Experimental study of quasi-one-dimensional comb-like photonic crystals containing left-handed material," Optics Communications, Vol. 281, No. 14, 3681-3685, 2008.

18. Cocoletzi, Gregorio H., L. Dobrzynski, B. Djafari-Rouhani, H. Al-Wahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative negative-phase-velocity materials," Journal of Physics: Condensed Matter, Vol. 18, No. 15, 3683, Apr. 19 2006.
doi:10.1088/0953-8984/18/15/014

19. Yin, Cheng-Ping and He-Zhou Wang, "Narrow transmission bands of quasi-1D comb-like photonic waveguides containing negative index materials," Physics Letters A, Vol. 373, No. 11, 1093-1096, Mar. 2009.
doi:10.1016/j.physleta.2009.01.029

20. Tan, Wei, Zhiguo Wang, and Hong Chen, "Complete tunneling of light through mu-negative media," Progress In Electromagnetics Research M, Vol. 8, 27-37, 2009.

21. Vu, Than-Mai, "Contribution à la mise en oeuvre de fonctions accordables à MEMs RF en bade millimétrique sur silicium," Doctoral dissertation, Université Paul Sabatier-Toulouse III, 2010.

22. Ben-Ali, Y., A. Ghadban, Z. Tahri, K. Ghoumid, and D. Bria, "Accordable filters by defect modes in single and double negative star waveguides grafted dedicated to electromagnetic communications applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 4, 539-558, 2020.
doi:10.1080/09205071.2020.1724830

23. Mouadili, A., E. H. El Boudouti, A. Soltani, A. Talbi, A. Akjouj, and B. Djafari-Rouhani, "Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits," Journal of Applied Physics, Vol. 113, No. 16, 164101, Apr. 2013.
doi:10.1063/1.4802695

24. Mouadili, A., E. H. El Boudouti, A. Soltani, A. Talbi, B. Djafari-Rouhani, A. Akjouj, and K. Haddadi, "Electromagnetically induced absorption in detuned stub waveguides: A simple analytical and experimental model," Journal of Physics: Condensed Matter, Vol. 26, No. 50, 505901, 2014.
doi:10.1088/0953-8984/26/50/505901

25. Errouas, Younes, Youssef Ben-Ali, Ilyass El Kadmiri, Zakaria Tahri, and Driss Bria, "Propagation of electromagnetic waves in one dimensional symmetric and asymmetric Comb-like photonic structure containing defects," Materials Today: Proceedings, Vol. 31, S16-S23, 2020.
doi:10.1016/j.matpr.2020.05.038

26. Errouas, Younes, Youssef Ben-Ali, Abdelaziz Ouariach, Zakaria Tahri, and Driss Bria, "Propagation of the electromagnetic waves in one-dimensional asymmetric photonic comb-like structure based on Fibonacci chains of grafted resonators," Materials Today: Proceedings, Vol. 27, No. 4, 3058-3064, 2020.
doi:10.1016/j.matpr.2020.03.532

27. Ben-Ali, Y., I. El Kadmiri, Errouas Younes, A. Ahaitouf, and D. Bria, "Four frequencies filtering by the one-dimensional photonic defectives star waveguides structure," Optical Memory and Neural Networks, Vol. 31, No. 2, 163-178, Jun. 2022.
doi:10.3103/S1060992X22020023

28. Errouas, Younes, Youssef Ben-ali, Abdelaziz Ouariach, Zakaria Tahri, and Driss Bria, "Propagation of the electromagnetic waves in asymmetric defective one-dimensional photonic comb-like structure," Distributed Sensing and Intelligent Systems, 607-617, Springer, Cham, 2022.

29. Errouas, Younes, Zakaria Tahri, Youssef Ben-Ali, and Driss Bria, "Band structure and photonic band gap in comb-like structure asymmetric with left-handed materials," 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), 1-5, IEEE, 2019.

30. Noual, Adnane, Ossama El Abouti, El Houssaine El Boudouti, Abdellatif Akjouj, Yan Pennec, and Bahram Djafari-Rouhani, "Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities," Applied Physics A, Vol. 123, 1-7, 2017.

31. Khattou, S., M. Amrani, A. Mouadili, E. H. El Boudouti, A. Talbi, A. Akjouj, and B. Djafari-Rouhani, "Three port photonic and plasmonic demultiplexers based on Cross and U-shaped stub structures: Application for filtering and sensing," Journal of Applied Physics, Vol. 131, No. 15, 153102, Apr. 2022.
doi:10.1063/5.0085955

32. Amrani, M., S. Khattou, Y. Rezzouk, A. Mouadili, A. Noual, E. H. El Boudouti, and Bahram Djafari-Rouhani, "Analytical and numerical study of T-shaped plasmonic demultiplexer based on Fano and induced transparency resonances," Journal of Physics D: Applied Physics, Vol. 55, No. 7, 075106, 2021.

33. El-Aouni, M., Y. Ben-Ali, I. El Kadmiri, and D. Bria, Y-shaped: ICEERE 2022, 20-22 May 2022, Saidia, Morocco (pp. 193-202), Singapore: Springer Nature Singapore.

34. Fernandes, Paolo and Mirco Raffetto, "Existence, uniqueness and finite element approximation of the solution of time-harmonic electromagnetic boundary value problems involving metamaterials," Compel --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 24, No. 4, 1450-1469, 2005.
doi:10.1108/03321640510615724

35. Wicharn, Surawut and Prathan Buranasiri, "Quasibirefringent phase-matching technique for third-harmonic pulse generation from multilayered metamaterials," Optical Engineering, Vol. 57, No. 11, 111803, 2018.
doi:10.1117/1.OE.57.11.111803