Vol. 121
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-07-09
Robustness of an All-Optical Limiter to Manufacturing Errors
By
Progress In Electromagnetics Research Letters, Vol. 121, 65-69, 2024
Abstract
In this paper, we present a numerical study to assess the robustness of an all-optical photonic limiter based on a two-dimensional (2D PC) TiO2 photonic crystal with a single ZnO nonlinear two-photon absorption (TPA) defect to manufacturing disturbances. These disturbances studied here concern diameters and positions. It is revealed that our limiter configuration is very robust to manufacturing errors.
Citation
Frederique Gadot, and Geraldine Guida, "Robustness of an All-Optical Limiter to Manufacturing Errors," Progress In Electromagnetics Research Letters, Vol. 121, 65-69, 2024.
doi:10.2528/PIERL23122203
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second Ed., Princeton University Press, 2008.

2. Guida, G., "Numerical studies of disordered photonic crystals," Progress In Electromagnetics Research, Vol. 41, 107-131, 2003.
doi:10.2528/PIER02010805

3. Fan, Wenjuan, Zhibiao Hao, Zheng Li, Yunsong Zhao, and Yi Luo, "Influence of fabrication error on the characteristics of a 2-D photonic-crystal cavity," Journal of Lightwave Technology, Vol. 28, No. 10, 1455-1458, 2010.

4. Kim, Heungjoon, Susumu Noda, Bong-Shik Song, and Takashi Asano, "Determination of nonlinear optical efficiencies of ultrahigh-Q photonic crystal nanocavities with structural imperfections," ACS Photonics, Vol. 8, No. 10, 2839-2845, 2021.

5. Guida, G., T. Brillat, A. Ammouche, F. Gadot, A. De Lustrac, and A. Priou, "Dissociating the effect of different disturbances on the band gap of a two-dimensional photonic crystal," Journal of Applied Physics, Vol. 88, No. 8, 4491-4497, 2000.

6. Sidibe, A., F. Gadot, B. Belier, G. Bordier, A. Ghribi, A. Tartari, D. Cammilleri, M. Piat, J. Martino, and F. Pajot, "Robustness of the behavior of microstrip lines loaded with disordered complementary split ring resonators," 2013 Loughborough Antennas & Propagation Conference (LAPC), 530-533, Loughborough, UK, Nov. 2013.

7. Lin, H. B., R. J. Tonucci, and A. J. Campillo, "Two-dimensional photonic bandgap optical limiter in the visible," Optics Letters, Vol. 23, No. 2, 94-96, Jan. 1998.

8. Fernando, M. P. and K. W. Gamalath, "Modelling all-optical switching and limiting properties of alas photonic crystals," International Letters of Chemistry, Physics and Astronomy, Vol. 77, 1-14, Jan. 2018.
doi:10.56431/p-50jls2

9. Gadhwal, Reena and Ambika Devi, "A review on the development of optical limiters from homogeneous to reflective 1-D photonic crystal structures," Optics & Laser Technology, Vol. 141, 107144, 2021.

10. Bonnefois, J. J., G. Guida, and A. Priou, "A new multiple scattering method application: Simulating an infinite 2D photonic crystal by analyzing, sorting and suppressing the border effects," Optics Communications, Vol. 251, No. 1-3, 64-74, 2005.
doi:10.1016/j.optcom.2005.02.074

11. Gadot, Frédérique, Ramez Hamié, and Géraldine Guida, "All-optical limiter photonic crystal with two-photon absorption," Journal of the Optical Society of America A, Vol. 39, No. 8, 1442-1448, 2022.
doi:10.1364/JOSAA.460734

12. Bonnefois, J., "Modélisation d’effets non linéaires dans les cristaux photoniques, application à la limitation optique," Ph.D. Dissertation, Universite Paris Nanterre, France, 2006.

13. Valligatla, Sreeramulu, Alessandro Chiasera, Stefano Varas, Pratyusha Das, B. N. Shivakiran Bhaktha, et al. "Optical field enhanced nonlinear absorption and optical limiting properties of 1-D dielectric photonic crystal with ZnO defect," Optical Materials, Vol. 50, 229-233, Dec. 2015.
doi:10.1016/j.optmat.2015.10.032