Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-02-07
Unconventional Method for Antenna Array Synthesizing Based on Ascending Clustered Rings
By
Progress In Electromagnetics Research Letters, Vol. 117, 69-73, 2024
Abstract
Recently, clustered antenna arrays have been proved as an efficient method in implementing the large planar arrays for massive MIMO wireless communications in 5G and beyond applications. However, obtaining optimum clustering configurations needs a high computational time, and it does not guarantee a total clustering coverage of the whole array aperture. In this paper, a new and unconventional array pattern synthesis method based on ascending/descending clustered subarray rings is presented. The method is equally applicable to the rectangular and circular planar arrays where they are first divided into multiple square or circular clustered rings starting from the largest ring at the array perimeter up to the last ring (the smallest one) at the array center. Then the amplitude distributions of these clustered rings are optimized to obtain the desired radiation characteristics subject to the user-defined constraint mask. Implementation of the proposed array at the clustered level instead of the conventional element level offers many advantages such as simplified feeding network, efficient taper efficiency, low sidelobe level, and high directivity. Simulation results show the effectiveness of the proposed method for both square and circular planar array layouts.
Citation
Jafar Ramadhan Mohammed, "Unconventional Method for Antenna Array Synthesizing Based on Ascending Clustered Rings," Progress In Electromagnetics Research Letters, Vol. 117, 69-73, 2024.
doi:10.2528/PIERL23122201
References

1. Mohammed, Jafar Ramadhan, "Minimizing grating lobes in large arrays using clustered amplitude tapers," Progress In Electromagnetics Research C, Vol. 120, 93-103, 2022.
doi:10.2528/PIERC22031706

2. Mailloux, R. J., "A low-sidelobe partially overlapped constrained feed network for time-delayed subarrays," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 2, 280-291, 2001.
doi:10.1109/8.914295

3. Goffer, A. P., M. Kam, and P. R. Herczfeld, "Design of phased arrays in terms of random subarrays," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 6, 820-826, Jun. 1994.
doi:10.1109/8.301701

4. Abdulqader, Ahmed Jameel, Jafar Ramadhan Mohammed, and Raad H. Thaher, "Antenna pattern optimization via clustered arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.
doi:10.2528/PIERM20042307

5. Jeong, Taeyong, Juho Yun, Kyunghyun Oh, Jihyung Kim, Dae Woong Woo, and Keum Cheol Hwang, "Shape and weighting optimization of a subarray for an mm-Wave phased array antenna," Applied Sciences, Vol. 11, No. 15, 6803, 2021.
doi:10.3390/app11156803

6. Mohammed, Jafar Ramadhan, "A method for thinning useless elements in the planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 97, 105-113, 2021.
doi:10.2528/PIERL21022104

7. Abdelhay, M. A., N. O. Korany, and S. E. El-Khamy, "Synthesis of uniformly weighted sparse concentric ring arrays based on off-grid compressive sensing framework," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 4, 448-452, 2021.
doi:10.1109/LAWP.2021.3052174

8. Mohammed, J. R., "Synthesizing sum and difference patterns with low complexity feeding network by sharing element excitations," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2563901, 7 pages, 2017.

9. Mohammed, Jafar Ramadhan, "Element selection for optimized multiwide nulls in almost uniformly excited arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 629-632, Apr. 2018.
doi:10.1109/LAWP.2018.2807371

10. Dicandia, Francesco Alessio and Simone Genovesi, "Analysis of performance enhancement of clustered-based phased arrays employing mixed antenna element factor," IEEE Transactions on Antennas and Propagation, Dec. 2023.

11. Palmeri, Roberta, Tommaso Isernia, and Andrea Francesco Morabito, "Diagnosis of planar arrays through phaseless measurements and sparsity promotion," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1273-1277, Jun. 2019.
doi:10.1109/LAWP.2019.2914529

12. Rocca, Paolo, Giacomo Oliveri, Robert J. Mailloux, and Andrea Massa, "Unconventional phased array architectures and design methodologies - A review," Proceedings of the IEEE, Vol. 104, No. 3, 544-560, Mar. 2016.
doi:10.1109/JPROC.2015.2512389

13. Mohammed, J. R., "Synthesizing non-uniform antenna arrays using tiled subarray blocks," Journal of Telecommunications and Information Technology, No. 4, 1-8, Oct. 2023.

14. Rocca, Paolo, Nicola Anselmi, Alessandro Polo, and Andrea Massa, "Modular design of hexagonal phased arrays through diamond tiles," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3598-3612, May 2020.
doi:10.1109/TAP.2019.2963561