Vol. 117
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-30
A Broadband SIW Cavity-Backed Circular Arc-Shaped Slot Antenna for Millimeter-Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 117, 47-54, 2024
Abstract
A broadband circular arc-shaped slot antenna is proposed in this paper which operates from 25.1 GHz to 31.5 GHz. The antenna is based on a substrate-integrated waveguide (SIW) and fed through a grounded coplanar waveguide (GCPW). A circular arc-shaped slot is presented instead of a conventional narrow rectangular slot to extend bandwidth performance. The slot antenna generates six closely resonant frequencies by exciting high-order modes, which help get a broadband response. Antenna's prototype is fabricated using the standard Printed Circuit Board (PCB) process. The results of its measurement show that the antenna achieves an impedance bandwidth of 22.6% at 28 GHz and a peak gain of 11.5 dBi. The efficiency in the operating bandwidth is more than 85%. The antenna shows the merits of low-profile, high-gain, and broadband characteristics, which are very suitable for mm-wave wireless communication systems.
Citation
Mingming Gao, Chunli Liu, Jingchang Nan, and Hongliang Niu, "A Broadband SIW Cavity-Backed Circular Arc-Shaped Slot Antenna for Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 117, 47-54, 2024.
doi:10.2528/PIERL23121505
References

1. Lockie, Doug and Don Peck, "High-data-rate millimeter-wave radios," IEEE Microwave Magazine, Vol. 10, No. 5, 75-83, Aug. 2009.
doi:10.1109/MMM.2009.932834

2. Rappaport, Theodore S., Yunchou Xing, George R. MacCartney, Andreas F. Molisch, Evangelos Mellios, and Jianhua Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks - With a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6213-6230, Dec. 2017.
doi:10.1109/TAP.2017.2734243

3. Ali, Muquaddar, Kamalesh Kumar Sharma, Rajendra Prasad Yadav, Arjun Kumar, Fan Jiang, Qingsha S. Cheng, and Guan-Long Huang, "Design of dual mode wideband SIW slot antenna for 5G applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 12, e22449, 2020.

4. Xiao, Zhiming, Yongmei Pan, Xiyao Liu, and Kwok Wa Leung, "A wideband magnetoelectric dipole antenna with wide beamwidth for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 4, 918-922, 2023.

5. Chen, Ming, Xiao-Chuan Fang, Wei Wang, Hong-Tao Zhang, and Guan-Long Huang, "Dual-band dual-polarized waveguide slot antenna for SAR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 10, 1719-1723, 2020.

6. Xu, Feng and Ke Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, 2005.

7. Luo, Guo Qing, Zhi Fang Hu, Lin Xi Dong, and Ling Ling Sun, "Planar slot antenna backed by substrate integrated waveguide cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 236-239, 2008.

8. Luo, Guo Qing, Zhi Fang Hu, Wen Jun Li, Xiao Hong Zhang, Ling Ling Sun, and Jian Feng Zheng, "Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1698-1704, 2012.

9. Chaturvedi, Divya, Ayman A. Althuwayb, and Arvind Kumar, "Bandwidth enhancement of a planar SIW cavity-backed slot antenna using slot and metallic-shorting via," Applied Physics A, Vol. 128, No. 3, 193, 2022.

10. Mungaru, Nanda Kumar and Shanmugannatham Thangavelu, "Broadband substrate-integrated waveguide venus-shaped slot antenna for V-band applications," Microwave and Optical Technology Letters, Vol. 61, No. 10, 2342-2347, 2019.

11. Li, Hui, Yibo Cheng, Liang Mei, and Fei Wu, "Dual-polarized frame-integrated slot arrays for 5G mobile handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 11, 1953-1957, 2020.

12. Cheng, Tong, Wen Jiang, Shuxi Gong, and Yaqing Yu, "Broadband SIW cavity-backed modified dumbbell-shaped slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 936-940, 2019.

13. Kumar, Lalit, Vandana Nath, and B. Reddy, "A wideband substrate integrated waveguide (SIW) antenna using shorted vias for 5G communications," AEU-International Journal of Electronics and Communications, Vol. 171, 154879, 2023.

14. Shi, Yuzhong, Juhua Liu, and Yunliang Long, "Wideband triple- and quad-resonance substrate integrated waveguide cavity-backed slot antennas with shorting vias," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5768-5775, 2017.

15. Wu, Qi, Jiexi Yin, Chen Yu, Haiming Wang, and Wei Hong, "Broadband planar SIW cavity-backed slot antennas aided by unbalanced shorting vias," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 363-367, 2019.

16. Shi, Yan, Wei Jing Wang, and Ting Ting Hu, "A transparent SIW cavity-based millimeter-wave slot antenna for 5G communication," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 1105-1109, 2022.

17. Altaf, Amir, Waseem Abbas, and Munkyo Seo, "A wideband SIW-based slot antenna for D-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 1868-1872, 2021.

18. Mohamed, Issa M. and Abdel-Razik Sebak, "60 GHz 2-D scanning multibeam cavity-backed patch array fed by compact SIW beamforming network for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2320-2331, 2019.

19. Wang, Ren, Yu Duan, Yu Song, Wu-Guang Zhao, Yan-He Lv, Mu-Sheng Liang, and Bing-Zhong Wang, "Broadband high-gain empty SIW cavity-backed slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 2073-2077, 2021.

20. Liu, Chun-Mei, Shao-Qiu Xiao, and Ke Wu, "Wideband slot antenna backed by cylindrical substrate-integrated waveguide cavity," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1509-1518, 2019.