1. Halivni, Bar and Mor Mordechai Peretz, "Current controlled transmitter for high frequency WPT utilizing non-invasive PCB integrated rogowski current sensor," 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), 1639-1644, IEEE, Orlando, FL, USA, Mar. 2023.
doi:10.1109/APEC43580.2023.10131355
2. Pandey, Rashmi, Ashok Kumar Shankhwar, and Ashutosh Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
3. Pandey, Kuldeep and Ritesh Sadiwala, "Dual-port MIMO antenna design for IoT: Analysis and implementation," Journal of Integrated Science and Technology, Vol. 12, No. 3, 768, 2024.
doi:10.62110/sciencein.jist.2024.v12.768
4. Salvati, Raffaele, Valentina Palazzi, Giordano Cicioni, Guendalina Simoncini, Federico Alimenti, Manos M. Tentzeris, Paolo Mezzanotte, and Luca Roselli, "Zero-power wireless pressure sensor based on backscatterer harmonic transponder in a WPT context," 2022 Wireless Power Week (WPW), 199-202, IEEE, Bordeaux, France, Jul. 2022.
doi:10.1109/WPW54272.2022.9854038
5. Shiba, Konosuke and Masaharu Takahashi, "A development of WPT devices for wireless-powered small sensors for home health care," 2022 International Symposium on Antennas and Propagation (ISAP), 81-82, IEEE, Sydney, Australia, 2022.
doi:10.1109/ISAP53582.2022.9998839
6. He, Zhongqi and Changjun Liu, "A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 4, 433-436, Apr. 2020.
doi:10.1109/LMWC.2020.2979711
7. Pandey, Rashmi, Ashok Kumar Shankhwar, and Ashutosh Singh, "Design and analysis of rectenna at 2.42 GHz for Wi-Fi energy harvesting," Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021.
8. Lin, Wei and Richard W. Ziolkowski, "Wireless power transfer (WPT) enabled IoT sensors based on ultra-thin electrically small antennas," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, Mar. 2021.
9. He, Zhongqi, Jing Lan, and Changjun Liu, "Compact rectifiers with ultra-wide input power range based on nonlinear impedance characteristics of Schottky diodes," IEEE Transactions on Power Electronics, Vol. 36, No. 7, 7407-7411, Jul. 2021.
doi:10.1109/TPEL.2020.3046083
10. He, Zhongqi, Hang Lin, and Changjun Liu, "A novel class-C rectifier with high efficiency for wireless power transmission," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 12, 1197-1200, Dec. 2020.
doi:10.1109/LMWC.2020.3029441
11. Takamori, Ryo, Midori Kawasaki, Harunobu Seita, Kentaro Nishimori, Naoki Honma, Kenjiro Nishikawa, Yusuke Maru, and Sigeo Kawasaki, "Wireless sensor network in reusable vehicle rocket and low-power 20–30 GHz amplifier MMIC," 2013 IEEE Wireless Power Transfer (WPT), 96-99, Perugia, Italy, May 2013.
12. Jin, Chunyang, J. Wang, D. Y. Cheng, K. F. Cui, and M. Q. Li, "A novel wideband rectifier with two-level impedance matching network for ambient wireless energy harvesting," Journal of Physics: Conference Series, Vol. 1168, No. 2, 022020, Dec. 2019.
doi:10.1088/1742-6596/1168/2/022020
13. Barton, Taylor W., Joshua M. Gordonson, and David J. Perreault, "Transmission line resistance compression networks and applications to wireless power transfer," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 252-260, Mar. 2015.
doi:10.1109/JESTPE.2014.2319056
14. Boursianis, Achilles D., Maria S. Papadopoulou, Stavros Koulouridis, Paolo Rocca, Apostolos Georgiadis, Manos M. Tentzeris, and Sotirios K. Goudos, "Triple-band single-layer rectenna for outdoor RF energy harvesting applications," Sensors, Vol. 21, No. 10, 3460, May 2021.
doi:10.3390/s21103460
15. Kyono, T., R. O. Suzuki, and K. Ono, "Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser," IEEE Transactions on Energy Conversion, Vol. 18, No. 2, 330-334, Jun. 2003.
doi:10.1109/TEC.2003.811721
16. Auckland, D. W., R. Shuttleworth, A. C. Luff, B. P. Axcell, and M. Rahman, "Design of a semiconductor thermoelectric generator for remote subsea wellheads," IEE Proceedings --- Electric Power Applications, Vol. 142, No. 2, 65-70, Mar. 1995.
doi:10.1049/ip-epa:19951707
17. Kim, Rae-Young and Jih-Sheng Lai, "A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications," 2007 IEEE Industry Applications Annual Meeting, 977-984, IEEE, Sep. 2007.
18. Collado, Ana and Apostolos Georgiadis, "Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 8, 2225-2234, Aug. 2013.
doi:10.1109/TCSI.2013.2239154
19. Lemey, Sam, Frederick Declercq, and Hendrik Rogier, "Textile antennas as hybrid energy-harvesting platforms," Proceedings of the IEEE, Vol. 102, No. 11, 1833-1857, Nov. 2014.
doi:10.1109/JPROC.2014.2355872
20. Guo, Lei, Xiaoqiang Gu, Peng Chu, Simon Hemour, and Ke Wu, "Collaboratively harvesting ambient radiofrequency and thermal energy," IEEE Transactions on Industrial Electronics, Vol. 67, No. 5, 3736-3746, May 2020.
doi:10.1109/TIE.2019.2914627
21. Gu, Xiaoqiang, Lei Guo, Moussa Harouna, Simon Hemour, and Ke Wu, "Accurate analytical model for hybrid ambient thermal and RF energy harvester," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 1122-1125, Philadelphia, PA, USA, Jun. 2018.
22. Bakytbekov, Azamat, Thang Q. Nguyen, Ge Zhang, Michael S. Strano, Khaled N. Salama, and Atif Shamim, "Dual-function triple-band heatsink antenna for ambient RF and thermal energy harvesting," IEEE Open Journal of Antennas and Propagation, Vol. 3, 263-273, 2022.
doi:10.1109/OJAP.2022.3149392
23. Bakytbekov, Azamat, Zere Iman, and Atif Shamim, "3D printed bifunctional triple-band heatsink antenna for RF and thermal energy harvesting," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1563-1564, Montreal, QC, Canada, Jul. 2020.
doi:10.1109/IEEECONF35879.2020.9330253
24. Jing, Jianwei, Jiafei Pang, Hang Lin, Zhenyu Qiu, and Changjun Liu, "A multiband compact low-profile planar antenna based on multiple resonant stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/PIERL20071104
25. Liu, Changjun, Feifei Tan, Hexin Zhang, and Qijuan He, "A novel single-diode microwave rectifier with a series band-stop structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 2, 600-606, Feb. 2017.
doi:10.1109/TMTT.2016.2626286
26. Mahan, G., B. Sales, and J. Sharp, "Thermoelectric materials: New approaches to an old problem," Physics Today, Vol. 50, No. 3, 42-47, Mar. 1997.
doi:10.1063/1.881752
27. Song, Chaoyun, Ping Lu, and Shanpu Shen, "Highly efficient omnidirectional integrated multiband wireless energy harvesters for compact sensor nodes of internet-of-things," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 8128-8140, Sep. 2021.
doi:10.1109/TIE.2020.3009586
28. Vital, Dieff, Shubhendu Bhardwaj, and John L. Volakis, "Textile-based large area RF-power harvesting system for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2323-2331, Mar. 2020.
doi:10.1109/TAP.2019.2948521
29. Sun, Hucheng, Jie Huang, and Yong Wang, "An omnidirectional rectenna array with an enhanced RF power distributing strategy for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4931-4936, Jun. 2022.
doi:10.1109/TAP.2021.3138542