Vol. 124
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-02-09
A Flexible Foldable Broadband Metamaterial Absorber Fabricated by Intaglio Printing Technology
By
Progress In Electromagnetics Research M, Vol. 124, 29-34, 2024
Abstract
Absorbing materials can absorb incident electromagnetic waves effectively and have important research value in radar fields. However, the current absorbing materials are mostly affected by the thickness and flexibility of the dielectric substrate, and they have shortcomings such as being not thin, not flexible, not folding, and not conformal with the protection target, which is not conducive to practical application. In this paper, we propose a flexible absorbing material that can be folded freely for wearable and practical engineering applications, which is composed of a conductive carbon paste ink resistance film layer, a flexible fabric dielectric substrate and a metal backplane. When the incidence angle is less than 30°, more than 90% absorption performance can be achieved at the operating frequency of 9.5-11.5 GHz with polarization insensitive characteristics. Simulated and experimental results prove the effectiveness of the structure. Our work provides the groundwork for the commercialization of future meta-devices such as wearable invisibility cloaks, sensors, optical filters/switchers, photodetectors, and energy converters.
Citation
Ye Dong, Zhangyou Yang, Siqi Zhang, Rongrong Zhu, Bin Zheng, and Huan Lu, "A Flexible Foldable Broadband Metamaterial Absorber Fabricated by Intaglio Printing Technology," Progress In Electromagnetics Research M, Vol. 124, 29-34, 2024.
doi:10.2528/PIERM23121308
References

1. Veselago, Viktor G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001.
doi:10.1126/science.1058847

3. Schurig, David, Jack J. Mock, B. J. Justice, Steven A. Cummer, John B. Pendry, Anthony F. Starr, and David R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

4. Marinov, K., A. D. Boardman, V. A. Fedotov, and N. Zheludev, "Toroidal metamaterial," New Journal of Physics, Vol. 9, No. 9, 324, 2007.

5. Magnus, F., B. Wood, J. Moore, Kelly Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c. magnetic metamaterial," Nature Materials, Vol. 7, 295-297, 2008.

6. Chen, Hou-Tong, Willie J. Padilla, Joshua M. O. Zide, Arthur C. Gossard, Antoinette J. Taylor, and Richard D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 597-600, 2006.
doi:10.1038/nature05343

7. Huang, Min, Bin Zheng, Tong Cai, Xiaofeng Li, Jian Liu, Chao Qian, and Hongsheng Chen, "Machine-learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, 2001-2010, 2022.

8. Zhu, Rongrong, Tianhang Chen, Kai Wang, Hao Wu, and Huan Lu, "Metasurface-enabled electromagnetic illusion with generic algorithm," Frontiers in Materials, Vol. 10, 2023.

9. Padilla, Willie J., Dimitri N. Basov, and David R. Smith, "Negative refractive index metamaterials," Materials Today, Vol. 9, No. 7-8, 28-35, 2006.

10. Dolling, Gunnar, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters, Vol. 32, No. 1, 53-55, 2007.

11. Chen, Hongsheng and Min Chen, "Flipping photons backward: Reversed Cherenkov radiation," Materials Today, Vol. 14, No. 1-2, 34-41, 2011.
doi:10.1016/S1369-7021(11)70020-7

12. Duan, Zhaoyun, Xianfeng Tang, Zhanliang Wang, Yabin Zhang, Xiaodong Chen, Min Chen, and Yubin Gong, "Observation of the reversed Cherenkov radiation," Nature Communications, Vol. 8, 14901, 2017.

13. Seddon, N. and T. Bearpark, "Observation of the inverse Doppler effect," Science, Vol. 302, No. 5650, 1537-1540, 2003.
doi:10.1126/science.1089342

14. Lee, Sam Hyeon, Choon Mahn Park, Yong Mun Seo, and Chul Koo Kim, "Reversed Doppler effect in double negative metamaterials," Physical Review B, Vol. 81, 241102, Jun. 2010.
doi:10.1103/PhysRevB.81.241102

15. Zhai, S. L., X. P. Zhao, S. Liu, F. L. Shen, L. L. Li, and C. R. Luo, "Inverse Doppler effects in broadband acoustic metamaterials," Scientific Reports, Vol. 6, 32388, 2016.
doi:10.1038/srep32388

16. Lu, Huan, Bin Zheng, Tong Cai, Chao Qian, Yihao Yang, Zuojia Wang, and Hongsheng Chen, "Frequency-controlled focusing using achromatic metasurface," Advanced Optical Materials, Vol. 9, No. 1, 2001311, Jan. 2021.
doi:10.1002/adom.202001311

17. Hu, Yufeng, Xuan Liu, Mingke Jin, Yutao Tang, Xuecai Zhang, King Fai Li, Yan Zhao, Guixin Li, and Jing Zhou, "Dielectric metasurface zone plate for the generation of focusing vortex beams," PhotoniX, Vol. 2, 10, Jun. 2021.
doi:10.1186/s43074-021-00035-z

18. Lu, Huan, Jiwei Zhao, Bin Zheng, Chao Qian, Tong Cai, Erping Li, and Hongsheng Chen, "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Vol. 14, No. 1, 3301, 2023.
doi:10.1038/s41467-023-39070-8

19. Lu, Huan, Rongrong Zhu, Chi Wang, Tianze Hua, Siqi Zhang, and Tianhang Chen, "Soft actor-critic-driven adaptive focusing under obstacles," Materials, Vol. 16, No. 4, 1366, Feb. 2023.
doi:10.3390/ma16041366

20. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

21. Cheng, Yongzhi, Helin Yang, Zhengze Cheng, and Nan Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," Applied Physics A, Vol. 102, 99-103, 2011.

22. Chen, Hou-Tong, "Interference theory of metamaterial perfect absorbers," Optics Express, Vol. 20, No. 7, 7165-7172, 2012.
doi:10.1364/OE.20.007165

23. Huang, Li, Dibakar Roy Chowdhury, Suchitra Ramani, Matthew T. Reiten, Sheng-Nian Luo, Abul K. Azad, Antoinette J. Taylor, and Hou-Tong Chen, "Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers," Applied Physics Letters, Vol. 101, 101102, 2012.
doi:10.1063/1.4749823

24. Rhee, J. Y., Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, "Metamaterial-based perfect absorbers," Journal of Electromagnetic Waves and Applications, Vol. 28, 1541-1580, 2014.
doi:10.1080/09205071.2014.944273

25. Zhao, Xiaoguang, Kebin Fan, Jingdi Zhang, Huseyin R. Seren, Grace D. Metcalfe, Michael Wraback, Richard D. Averitt, and Xin Zhang, "Optically tunable metamaterial perfect absorber on highly flexible substrate," Sensors and Actuators A: Physical, Vol. 231, 74-80, 2015.
doi:10.1016/j.sna.2015.02.040

26. Bowen, Patrick T., Alexandre Baron, and David R. Smith, "Theory of patch-antenna metamaterial perfect absorbers," Physical Review A, Vol. 93, 063849, Jun. 2016.
doi:10.1103/PhysRevA.93.063849

27. Lei, Ming, Ningyue Feng, Qingmin Wang, Yanan Hao, Shanguo Huang, and Ke Bi, "Magnetically tunable metamaterial perfect absorber," Journal of Applied Physics, Vol. 119, 244504, 2016.

28. Liu, Xiaoming, Chuwen Lan, Ke Bi, Bo Li, Qian Zhao, and Ji Zhou, "Dual band metamaterial perfect absorber based on Mie resonances," Applied Physics Letters, Vol. 109, No. 6, 062902, 2016.

29. Khuyen, Bui Xuan, Bui Son Tung, Young Joon Yoo, Young Ju Kim, Ki Won Kim, Liang-Yao Chen, Vu Dinh Lam, and YoungPak Lee, "Miniaturization for ultrathin metamaterial perfect absorber in the VHF band," Scientific Reports, Vol. 7, 45151, 2017.

30. Schalch, Jacob, Guangwu Duan, Xiaoguang Zhao, Xin Zhang, and Richard D. Averitt, "Terahertz metamaterial perfect absorber with continuously tunable air spacer layer," Applied Physics Letters, Vol. 113, No. 6, 061113, 2018.

31. Liu, Xiaoming, Chuwen Lan, Bo Li, Qian Zhao, and Ji Zhou, "Dual band metamaterial perfect absorber based on artificial dielectric `molecules'," Scientific Reports, Vol. 6, 28906, 2016.

32. Amiri, Majid, Farzad Tofigh, Negin Shariati, Justin Lipman, and Mehran Abolhasan, "Review on metamaterial perfect absorbers and their applications to IoT," IEEE Internet of Things Journal, Vol. 8, No. 6, 4105-4131, 2021.

33. Huang, Min, Bin Zheng, Ruichen Li, Xiaofeng Li, Yijun Zou, Tong Cai, and Hongsheng Chen, "Diffraction neural network for multi-source information of arrival sensing," Laser & Photonics Reviews, Vol. 17, No. 10, 2300202, 2023.

34. Wu, Guozhang, Xiaofei Jiao, Yuandong Wang, Zeping Zhao, Yibo Wang, and Jianguo Liu, "Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide," Optics Express, Vol. 29, No. 2, 2703-2711, 2021.

35. Zhu, Rongrong, Dan Liu, Huan Lu, Liang Peng, Tong Cai, and Bin Zheng, "High-efficiency Pancharatnam-Berry metasurface-based surface plasma coupler," Advanced Photonics Research, 2300315, 2023.

36. Zheng, Bin, Huan Lu, Chao Qian, Dexin Ye, Yu Luo, and Hongsheng Chen, "Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks," Electromagnetic Science, Vol. 1, No. 2, 1-7, 2023.

37. Zhen, Zheng, Chao Qian, Yuetian Jia, Zhixiang Fan, Ran Hao, Tong Cai, Bin Zheng, Hongsheng Chen, and Erping Li, "Realizing transmitted metasurface cloak by a tandem neural network," Photonics Research, Vol. 9, No. 5, B229-B235, 2021.

38. Li, Ruichen, Yutong Jiang, Rongrong Zhu, Yijun Zou, Lian Shen, and Bin Zheng, "Design of ultra-thin underwater acoustic metasurface for broadband low-frequency diffuse reflection by deep neural networks," Scientific Reports, Vol. 12, No. 1, 12037, 2022.

39. Banadaki, Mohsen Dehghan, Abbas Ali Heidari, and Mansor Nakhkash, "A metamaterial absorber with a new compact unit cell," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 205-208, 2018.

40. Bhati, Amit, Kirankumar R. Hiremath, and Vivek Dixit, "Bandwidth enhancement of Salisbury screen microwave absorber using wire metamaterial," Microwave and Optical Technology Letters, Vol. 60, No. 4, 891-897, 2018.

41. Kim, Jongyeong, Heijun Jeong, and Sungjoon Lim, "Mechanically actuated frequency reconfigurable metamaterial absorber," Sensors and Actuators A: Physical, Vol. 299, 111619, 2019.

42. Long, L. V., N. S. Khiem, B. S. Tung, N. T. Tung, T. T. Giang, P. T. Son, B. X. Khuyen, V. D. Lam, L. Chen, H. Zheng, and Y. Lee, "Flexible broadband metamaterial perfect absorber based on graphene-conductive inks," Photonics, Vol. 8, 2021.

43. Lai, Senfeng, Yanghui Wu, Junjie Wang, Wen Wu, and Wenhua Gu, "Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure," Optical Materials Express, Vol. 8, No. 6, 1585-1592, 2018.

44. Park, Sangmin, Geonyeong Shin, Hyun Kim, Youngwan Kim, and Ick-Jae Yoon, "Polarization and incidence angle independent low-profile wideband metamaterial electromagnetic absorber using indium tin oxide (ITO) film," Applied Sciences, Vol. 11, No. 19, 9315, 2021.

45. Yin, Zhiping, Yujiao Lu, Sheng Gao, Jun Yang, Weien Lai, Zelun Li, and Guangsheng Deng, "Optically transparent and single-band metamaterial absorber based on indium-tin-oxide," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 2, e21536, 2019.