Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-02-13
Varactor Loaded Phase Shifter with Frequency-Adaptive Control Circuit
By
Progress In Electromagnetics Research Letters, Vol. 117, 97-101, 2024
Abstract
This paper introduces a novel RF phase shifter design that operates at constant phase shift over operation frequency range. The proposed phase shifter utilizes the conventional reflective-type phase shifter which is inherently frequency-dependent. The introduced reflective-type phase shifter design is integrated with an adaptive control circuit that varies the required DC voltage as a function of the frequency. Thus, the phase shift will be relatively constant throughout the frequency of operation compared to the conventional frequency-dependent reflective-type phase shifter. The phase shifter is designed to operate at 90˚ and is shown to maintain that phase shift with around 15˚ compared to the conventional design where the phase shift varies by more than 60˚ at the same bandwidth. The proposed design, including the adaptive controlled circuit, is fabricated, and the measured data agree with simulations.
Citation
Waleed Alomar, Abdullah Alburadi, Meshaal Alyahya, and Hussein Shaman, "Varactor Loaded Phase Shifter with Frequency-Adaptive Control Circuit," Progress In Electromagnetics Research Letters, Vol. 117, 97-101, 2024.
doi:10.2528/PIERL23120804
References

1. Pozar, David M., Microwave Engineering, 4th Ed., John Wiley & Sons, Hoboken, NJ, USA, 2012.

2. Sazegar, Mohsen, Yuliang Zheng, Holger Maune, Christian Damm, Xianghui Zhou, Joachim Binder, and Rolf Jakoby, "Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 5, 1265-1273, May 2011.
doi:10.1109/TMTT.2010.2103092

3. Lin, Chien-San, Sheng-Fuh Chang, Chia-Chan Chang, and Yi-Hao Shu, "Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 9, 1862-1868, Sep. 2007.
doi:10.1109/TMTT.2007.903346

4. Chan, Erwin H. W., WeiWei Zhang, and Robert A. Minasian, "Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control," Journal of Lightwave Technology, Vol. 30, No. 23, 3672-3678, Dec. 2012.
doi:10.1109/JLT.2012.2224093

5. Shehata, Rania Eid A., Moataza Hindy, Hamdi Elmekati, and Ayman Mohamed Fekry Elboushi, "Design of a beam-steering metamaterial inspired LPDA array for 5G applications," Progress In Electromagnetics Research M, Vol. 117, 151-161, 2023.
doi:10.2528/PIERM23042406

6. Sellal, K., L. Talbi, T. A. Denidni, and J. Lebel, "Design and implementation of a substrate integrated waveguide phase shifter," IET Microwaves, Antennas & Propagation, Vol. 2, No. 2, 194-199, 2008.

7. Peng, Hao, Xinlin Xia, Serioja Ovidiu Tatu, and Tao Yang, "An improved broadband SIW phase shifter with embedded air strips," Progress In Electromagnetics Research C, Vol. 67, 185-192, 2016.

8. Liu, Qiang, Yuan'an Liu, Yongle Wu, Jun-Yu Shen, Shulan Li, Cuiping Yu, and Ming Su, "A substrate integrated waveguide to substrate integrated coaxial line transition," Progress In Electromagnetics Research C, Vol. 36, 249-259, 2013.

9. Schiffman, B. M., "A new class of broad-band microwave 90-degree phase shifters," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 232-237, 1958.

10. Guo, Yong-Xin, Zhen-Yu Zhang, and Ling Chuen Ong, "Improved wide-band Schiffman phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 3, 1196-1200, Mar. 2006.
doi:10.1109/TMTT.2005.864105

11. Wang, Y., M. E. Bialkowski, and A. M. Abbosh, "Double microstrip-slot transitions for broadband ±90˚ microstrip phase shifters," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 58-60, 2012.
doi:10.1109/LMWC.2011.2181348

12. Yeung, Sai Ho, Zicong Mei, Tapan Kumar Sarkar, and Magdalena Salazar-Palma, "Design and testing of a single-layer microstrip ultrawideband 90° differential phase shifter," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 3, 122-124, 2013.

13. Wang, Jian-Xiao, Lin Yang, Yue Liu, Yi Wang, and Shu-Xi Gong, "Design of a wideband differential phase shifter with the application of genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 48, 45-49, 2014.

14. Ravelo, B., Marc Le Roy, and A. Pérennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microwave and Optical Technology Letters, Vol. 50, No. 12, 3078-3080, 2008.
doi:10.1002/mop.23883

15. Keser, Sinan and Mo Mojahedi, "Broadband negative group delay microstrip phase shifter design," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, North Charleston, SC, USA, 2009.