Vol. 116
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-09
A High Efficiency and Low Mutual Coupling Four-Element Antenna Array for GNSS Applications
By
Progress In Electromagnetics Research Letters, Vol. 116, 63-70, 2024
Abstract
In this manuscript, a compact four-element antenna array is introduced for global navigation satellite system (GNSS) upper L-band applications. The proposed design is modelled using a higher epsilon substrate to obtain a smaller patch footprint. The array consists of four rectangular right hand circularly polarized (RHCP) patches etched on a circular substrate having a compact diameter of only 125 mm. The patch elements cover the BeiDou B1 (1561.098 MHz), GPS L1 (1575.42 MHz), Galileo E1 (1575.42 MHz) and GLONASS G1 (1602 MHz) bands with an axial ratio below 3 dB. A defected ground structure (DGS) has been integrated in the ground plane of the proposed array along with a novel meta-isolator on the top side between the antennas to achieve a high isolation level of more than 24 dB in the complete band of interest. The proposed antenna array has a high gain of more than 6.9 dBi and a radiation efficiency greater than 93%. A prototype of the proposed array is fabricated, and measured results are presented to validate the design.
Citation
Abdullah Madni, and Wasif Tanveer Khan, "A High Efficiency and Low Mutual Coupling Four-Element Antenna Array for GNSS Applications," Progress In Electromagnetics Research Letters, Vol. 116, 63-70, 2024.
doi:10.2528/PIERL23113005
References

1. Sanz Subirana, J., J. M. Juan Zornoza, and M. Hernández-Pajares, "GNSS signal," Technical University of Catalonia, 2011.

2. Molisch, A. F. and M. Z. Win, "MIMO systems with antenna selection," IEEE Microwave Magazine, Vol. 5, No. 1, 46-56, Mar. 2004.
doi:10.1109/MMW.2004.1284943

3. Hui, H. T., "Reducing the mutual coupling effect in adaptive nulling using a re-defined mutual impedance," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 5, 178-180, May 2002.
doi:10.1109/7260.1000195

4. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

5. Gheethan, Ahmad A., Paul A. Herzig, and Gokhan Mumcu, "Compact 2 x 2 coupled double loop GPS antenna array loaded with broadside coupled split ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3000-3008, Jun. 2013.
doi:10.1109/TAP.2013.2253539

6. Gheethan, Ahmad and Gokhan Mumcu, "Coupling reduction of coupled double loop GPS antennas using split ring resonators," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2613-2616, IEEE, Spokane, WA, Jul. 2011.

7. Awais, Muhammad, Abdullah Madni, and Wasif Tanveer Khan, "Design of a compact high isolation 4-element wideband patch antenna array for GNSS applications," IEEE Access, Vol. 10, 13780-13786, 2022.
doi:10.1109/ACCESS.2022.3147600

8. Madni, Abdullah and Wasif Tanveer Khan, "Design of a compact 4-element GNSS antenna array with high isolation using a defected ground structure (DGS) and a microwave absorber," IEEE Open Journal of Antennas and Propagation, Vol. 4, 779-791, 2023.
doi:10.1109/OJAP.2023.3298773

9. Tamjid, Farshid, Farnaz Foroughian, Chris M. Thomas, Ahmadreza Ghahreamani, Robab Kazemi, and Aly E. Fathy, "Toward high-performance wideband GNSS antennas-design tradeoffs and development of wideband feed network structure," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 5796-5806, 2020.

10. Chen, Xiaodong, Clive G. Parini, Brian Collins, Yuan Yao, and Masood Ur Rehman, Antennas for Global Navigation Satellite Systems, John Wiley & Sons, 2012.
doi:10.1002/9781119969518

11. Huang, John, "A technique for an array to generate circular polarization with linearly polarized elements," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 9, 1113-1124, 1986.

12. Kovitz, Joshua M. and Yahya Rahmat-Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4970-4979, 2014.

13. Narbudowicz, A. Z., "Advanced circularly polarised microstrip patch antennas," Technological University Dublin, 2013.

14. Byun, Gangil, Hosung Choo, and Sunwoo Kim, "Design of a small arc-shaped antenna array with high isolation for applications of controlled reception pattern antennas," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1542-1546, Apr. 2016.
doi:10.1109/TAP.2016.2526098

15. Liu, Yinting, Shiyi Zhang, and Yougang Gao, "A high-temperature stable antenna array for the satellite navigation system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1397-1400, 2016.

16. Zhang, Jun, Jianxing Li, and Juan Chen, "Mutual coupling reduction of a circularly polarized four-element antenna array using metamaterial absorber for unmanned vehicles," IEEE Access, Vol. 7, 57469-57475, 2019.

17. Li, Jianxing, Hongyu Shi, Jianying Guo, and Anxue Zhang, "Compact four-element antenna array design for BeiDou Navigation Satellite System applications," Progress In Electromagnetics Research Letters, Vol. 57, 117-123, 2015.

18. Wei, Jia, Shaowei Liao, Quan Xue, and Wenquan Che, "Highly integrated multifunctional antenna for Global Navigation Satellite System," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 12, 12305-12310, 2022.