Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-29
Compact Single Notch UWB Bandpass Filter with Metamaterial and SIW Technique
By
Progress In Electromagnetics Research Letters, Vol. 117, 41-46, 2024
Abstract
A design of compact planar SIW filter with notch band characteristics is proposed. Double split square complementary split ring resonators are used to realize the ultra-wide band (UWB) characteristics. Proposed UWB filter contributes a passband from 2.9 GHz to 10.3 GHz with minimum insertion loss 0.7 dB at 3.7 GHz and maximum of 1.84 dB at 7 GHz. By employing complementary split ring resonator in the ground plane, a narrow band characteristic is obtained to reject the undesired wireless local area network (WLAN) signals. The notch band frequency ranges from 5 GHz to 5.7 GHz with insertion loss of 14 dB at center frequency. The 3 dB fractional bandwidth in the notch band is 12.9%. The variation of group delay less than 0.5 ns in the passband range. Overall size of the proposed filter is 0.35λg × 1.06λg. Because of these salient features, the proposed filter can be used for space applications.
Citation
Senathipathi Udhayanan, and Krishnan Shambavi, "Compact Single Notch UWB Bandpass Filter with Metamaterial and SIW Technique," Progress In Electromagnetics Research Letters, Vol. 117, 41-46, 2024.
doi:10.2528/PIERL23113004
References

1. Bandyopadhyay, Anjan, Pankaj Sarkar, and Rowdra Ghatak, "A bandwidth reconfigurable bandpass filter for ultra-wideband and wideband applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 6, 2747-2751, 2022.

2. Zhu, He and Qing-Xin Chu, "Ultra-wideband bandpass filter with a notch-band using stub-loaded ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 7, 341-343, 2013.
doi:10.1109/LMWC.2013.2262928

3. Yan, T., D. Lu, X.-H. Tang, and J. Xiang, "High-selectivity UWB bandpass filter with a notched band using stub-loaded multi-mode resonator," AEU-International Journal of Electronics and Communications, Vol. 70, No. 12, 1617-1621, 2016.

4. Xie, Jiacheng, Deshan Tang, Yiyang Shu, and Xun Luo, "Compact UWB BPF with broad stopband based on loaded-stub and C-shape SIDGS resonators," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 5, 383-386, 2021.
doi:10.1109/LMWC.2021.3136561

5. Dong, Yuan Dan, Tao Yang, and Tatsuo Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

6. Che, Wenquan, Chao Li, Kuan Deng, and Lisheng Yang, "A novel bandpass filter based on complementary split rings resonators and substrate integrated waveguide," Microwave and Optical Technology Letters, Vol. 50, No. 3, 699-701, 2008.
doi:10.1002/mop.23182

7. Ghatak, Rowdra, Pankaj Sarkar, R. K. Mishra, and D. R. Poddar, "A compact UWB bandpass filter with embedded SIR as band notch structure," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 5, 261-263, 2011.
doi:10.1109/LMWC.2011.2128302

8. Wei, F., L. Chen, X.-W. Shi, and C.-J. Gao, "UWB bandpass filter with one tunable notch-band based on DGS," Journal of Electromagnetic Waves and Applications, Vol. 26, 673-680, 2012.
doi:10.1080/09205071.2012.710788

9. Li, Q., Z.-J. Li, C.-H. Liang, and B. Wu, "UWB bandpass filter with notched band using DSRR," Electronics Letters, Vol. 46, No. 10, 692-693, 2010.
doi:10.1049/el.2010.0827

10. Li, Qun and Tao Yang, "Compact UWB half-mode SIW bandpass filter with fully reconfigurable single and dual notched bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 65-74, 2020.
doi:10.1109/TMTT.2020.3033830

11. Sarkar, D., T. Moyra, and L. Murmu, "An ultra-wideband (UWB) bandpass filter with complementary split ring resonator for coupling improvement," AEU-International Journal of Electronics and Communications, Vol. 71, 89-95, 2017.

12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

13. Falcone, F., T. Lopetegi, J. D. Baena, R. Marqués, F. Martı́n, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

14. Ali, Abid and Zhirun Hu, "Metamaterial resonator based wave propagation notch for ultrawideband filter applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 210-212, 2008.
doi:10.1109/LAWP.2008.920964