Vol. 117
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-28
Wafer Level 3D-Stacked Integration Technology with Coplanar Hot via MMIC for mm -Wave Low-Profile Applications
By
Progress In Electromagnetics Research Letters, Vol. 117, 27-32, 2024
Abstract
Wafer-level three-dimensional stacked integration technology is demonstrated in this paper, employing three gallium arsenide (GaAs) monolithic integrated circuits (MMICs) and gold (Au) bumps, and specifically designed for high-density and low-profile applications operating at millimeter-wave frequencies. A ground coplanar waveguide to ground coplanar waveguide (GCPW to GCPW) hot via interconnect has been developed to facilitate vertical transitions within a multi-stacked electromagnetic (EM) environment. Electrical connection between the upper and lower layers is achieved through 70 μm-height Au bumps. Compared to 2.5D packaging, this innovative structure exhibits an increased integration capability of more than three times within the same area, with a thickness of 0.451 mm. Ultra-wideband transmission between RF chips is achieved within a compact area of 0.16 square millimeters, enabling extremely short-distance interconnect for system-in-package configurations. Appropriate utilization of ground metal within the package ensures strict electromagnetic field confinement, preventing interference from adjacent circuits. The designed transitions were fabricated and characterized. The measured result has an insertion loss of less than 0.65 dB and return loss of better than 20 dB up to 40 GHz for a back-to-back structure. This integration technology can further enhance integration capability, reduce transmission loss, and improve electromagnetic isolation. The presented approach holds significant potential for applications requiring high-density integration and reliable performance in the millimeter-wave regime.
Citation
Xiaobo Zhu, Yujin Zhou, and Jun Zhou, "Wafer Level 3D-Stacked Integration Technology with Coplanar Hot via MMIC for mm -Wave Low-Profile Applications," Progress In Electromagnetics Research Letters, Vol. 117, 27-32, 2024.
doi:10.2528/PIERL23113002
References

1. Gutierrez-Aitken, A., "High density integration/multi-function assemblies, photonics, and mm-Wave components," 2022 IEEE MTT-S International Microwave Symposium (IMS 2022), 619-621, Denver, CO, USA, Jun. 2022.
doi:10.1109/IMS37962.2022.9865563

2. Watanabe, Atom O., Muhammad Ali, Sk Yeahia Been Sayeed, Rao R. Tummala, and Markondeya Raj Pulugurtha, "A review of 5G front-end systems package integration," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412

3. Hancock, Timothy M., Steven Gross, James McSpadden, Lawrence Kushner, Jason Milne, Jon Hacker, Ryan Walsh, Craig Hornbuckle, Charles Campbell, and Kevin Kobayashi, "The DARPA millimeter wave digital arrays (MIDAS) program," 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 1-4, Monterey, CA, USA, Nov. 2020.
doi:10.1109/BCICTS48439.2020.9392956

4. Kangasvieri, Tero, Mikko Komulainen, Heli Jantunen, and Jouko Vahakangas, "Low-loss and wideband package transitions for microwave and millimeter-wave MCMs," IEEE Transactions on Advanced Packaging, Vol. 31, No. 1, 170-181, Feb. 2008.
doi:10.1109/TADVP.2007.909462

5. Schmückle, F. J., A. Jentzsch, C. Gässler, P. Marschall, D. Geiger, and W. Heinrich, "40 GHz hot-via flip-chip interconnects," 2003 IEEE MTT-S International Microwave Symposium Digest (IMS 2003), Vol. 2, 1167-1170, Philadelphia, PA, USA, Jun. 2003.
doi:10.1109/MWSYM.2003.1212576

6. Khan, Wasif Tanveer, A. Çağrı Ulusoy, Robert L. Schmid, and John Papapolymerou, "Characterization of a low-loss and wide-band (DC to 170 GHz) flip-chip interconnect on an organic substrate," 2014 IEEE MTT-S International Microwave Symposium (IMS 2014), 1-4, Tampa, FL, USA, Jun. 2014.

7. Milner, Leigh E., Shyam G. Mehta, Leonard T. Hall, Simon J. Mahon, Sudipta Chakraborty, and Michael C. Heimlich, "Optimised hot-via transition with 20 dB return loss for MMIC packaging from DC to 110 GHz," 2021 51st European Microwave Conference (EuMC), 14-17, London, United Kingdom, Apr. 2022.

8. Yoshida, S., G. Fukuda, T. Noji, Y. Kobayashi, and S. Kawasaki, "Ka-band 2-stacked chip-scale-package using GaAs PA MMIC with hot-via interconnections for spacecraft applications," 2013 European Microwave Conference, 223-226, Nuremberg, Germany, Oct. 2013.

9. Yang, Jiapeng, Bingqing Zou, Jinping Xu, and Jun Zhou, "A hot-via chip-to-substrate interconnect for ultra-compact system package application up to W band," Progress In Electromagnetics Research Letters, Vol. 107, 75-81, 2022.
doi:10.2528/PIERL22020201

10. Wu, Wei-Cheng, Li-Han Hsu, Edward Yi Chang, Camilla Kaernfelt, Herbert Zirath, J. Piotr Starski, and Yun-Chi Wu, "60 GHz broadband MS-to-CPW hot-via flip chip interconnects," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 784-786, Nov. 2007.
doi:10.1109/LMWC.2007.908053

11. Abdullatif, Mohammad Salah, Sahand Noorizadeh, and Salam Hajjar, "Robust hot via interconnect technique with silver epoxy for GaAs MMIC," NAECON 2021 - IEEE National Aerospace and Electronics Conference, 195-199, Dayton, OH, USA, Aug. 2021.
doi:10.1109/NAECON49338.2021.9696414

12. Zhou, Jun, Jiapeng Yang, and Ya Shen, "3D heterogeneous integration technology using hot via MMIC and silicon interposer with millimeter wave application," 2017 IEEE MTT-S International Microwave Symposium (IMS 2017), 499-502, Honololu, HI, USA, Jun. 2017.

13. Monayakul, Sirinpa, S. Sinha, C.-T. Wang, N. Weimann, F. J. Schmueckle, M. Hrobak, V. Krozer, W. John, L. Weixelbaum, P. Wolter, O. Krueger, and W. Heinrich, "Flip-chip interconnects for 250 GHz modules," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 6, 358-360, Jun. 2015.
doi:10.1109/LMWC.2015.2424294

14. Versaci, Mario and Francesco Carlo Morabito, "Numerical approaches for recovering the deformable membrane profile of electrostatic microdevices for biomedical applications," Sensors, Vol. 23, No. 3, 1688, 2023.
doi:10.3390/s23031688

15. Ghouz, H. H. M. and E.-B. El-Sharawy, "An accurate equivalent circuit model of flip chip and via interconnects," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 12, 2543-2554, Dec. 1996.
doi:10.1109/22.554598

16. Wan, Liang, Quanli Li, Zhengpeng Wang, and Jianhua Wu, "Improved multimode TRL calibration method for characterization of homogeneous differential discontinuities," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 3, 694-703, Mar. 2015.
doi:10.1109/TIM.2014.2351311