Vol. 124
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-02-17
Design of Dual Band MIMO Antenna with Rhombus Shape for Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 124, 63-70, 2024
Abstract
In this paper, a compact quad-port Rhombus-Shaped MIMO Patch (RSMP) antenna with a complete ground structure has been designed for dual-band wireless applications. The RSMP antenna has a common patch configuration and resonates at 12.9 GHz and 16.5 GHz with the reflection coefficients of -17 dB and -25.7 dB, respectively. A rhombus-shaped slot is etched from the patch to generate dual-band frequencies. Microstrip feed lines are connected to the common patch and are used to improve the overall performance of the RSMP antenna. The RSMP antenna has gains of 9.62 dBi and 9.98 dBi at resonating frequencies. The bandwidths of the proposed MIMO antenna model are 300 MHz and 350 MHz, respectively. The proposed RSMP antenna model was fabricated and tested with the vector network analyzer Keysight N9917A for validation. The simulated and measured results for the gain, reflection coefficients, surface current distribution, radiation pattern, envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and channel capacity loss (CCL) are compared, and they are agreed well for wireless applications at Ku-band for broadcasting communications.
Citation
Chirukuri Naga Phaneendra, and Ketavath Kumarnaik, "Design of Dual Band MIMO Antenna with Rhombus Shape for Wireless Applications," Progress In Electromagnetics Research M, Vol. 124, 63-70, 2024.
doi:10.2528/PIERM23112803
References

1. Kong, Lingyu and Xiaojian Xu, "A compact dual-band dual-polarized microstrip antenna array for MIMO-SAR applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2374-2381, May 2018.
doi:10.1109/TAP.2018.2814222

2. Lee, S. W. and Y. J. Sung, "Reconfigurable rhombus-shaped patch antenna with Y-shaped feed for polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 163-166, 2015.
doi:10.1109/LAWP.2014.2358651

3. Sharma, Narinder and Sumeet Singh Bhatia, "Ultra-wideband fractal antenna using rhombus shaped patch with stub loaded defected ground plane: Design and measurement," AEU - International Journal of Electronics and Communications, Vol. 131, 153604, Mar. 2021.
doi:10.1016/j.aeue.2021.153604

4. Saravanan, Manavalan and Madihally Janardhana Srinivasa Rangachar, "Design of rhombus-shaped slot patch antenna for wireless communications," Journal of Computer Networks and Communications, Vol. 2019, 5149529, 2019.
doi:10.1155/2019/5149529

5. Liu, Shengying, Kaibo Jiang, Guobing Xu, Xumin Ding, Kuang Zhang, Jiahui Fu, and Qun Wu, "A dual-band shared aperture antenna array in Ku/Ka-bands for beam scanning applications," IEEE Access, Vol. 7, 78794-78802, 2019.
doi:10.1109/ACCESS.2019.2922647

6. Tang, Hong, Cory J. Bulger, Tom Rovere, Bowen Zheng, Sensong An, Hang Li, Yunxi Dong, Mohammad Haerinia, Clayton Fowler, Stephen Gonya, Wei Guo, and Hualiang Zhang, "A low-profile flexible dual-band antenna with quasi-isotropic radiation patterns for MIMO system on UAVs," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 49-53, Jan. 2023.
doi:10.1109/LAWP.2022.3201492

7. Cheng, Bo and Zhengwei Du, "A wideband low-profile microstrip MIMO antenna for 5G mobile phones," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 2, 1476-1481, Feb. 2022.
doi:10.1109/TAP.2021.3111330

8. Ambalgi, Ambresh P., S. K. Sujata, and Arti Vaish, "Experimental and simulation study of effects in etched patch antenna with multi slots," WSEAS Transactions on Communications, Vol. 19, 142-148, 2020.
doi:10.37394/23204.2020.19.16

9. Pasumarthi, Srinivasa Rao, Jagadeesh Babu Kamili, and Mallikarjuna Prasad Avala, "Design of dual band MIMO antenna with improved isolation," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1579-1583, Jun. 2019.
doi:10.1002/mop.31832

10. Wang, Hongwei, Ruiheng Zhang, Yong Luo, and Guangli Yang, "Compact eight-element antenna array for triple-band MIMO operation in 5G mobile terminals," IEEE Access, Vol. 8, 19433-19449, 2020.
doi:10.1109/ACCESS.2020.2967651

11. Chattha, Hassan Tariq, Muhammad Kamran Ishfaq, Bilal A. Khawaja, Abubakar Sharif, and Nathirulla Sheriff, "Compact multiport MIMO antenna system for 5G IoT and cellular handheld applications," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 11, 2136-2140, Nov. 2021.
doi:10.1109/LAWP.2021.3059419

12. Li, Zhenya, Chengyou Yin, and Xiaosong Zhu, "Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019.
doi:10.1109/ACCESS.2019.2906338

13. Choi, Jaehyun, Woonbong Hwang, Chisang You, Byungwoon Jung, and Wonbin Hong, "Four-element reconfigurable coupled loop MIMO antenna featuring LTE full-band operation for metallic-rimmed smartphone," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 99-107, Jan. 2019.
doi:10.1109/TAP.2018.2877299

14. Ikram, Muhammad, Emad Al Abbas, Nghia Nguyen-Trong, Khalil H. Sayidmarie, and Amin Abbosh, "Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7225-7233, Dec. 2019.
doi:10.1109/TAP.2019.2930119

15. Desai, Arpan, Jayshri Kulkarni, M. M. Kamruzzaman, Štěpán Hubálovský, Heng-Tung Hsu, and Ahmed A. Ibrahim, "Interconnected CPW fed flexible 4-port MIMO antenna for UWB, X, and Ku band applications," IEEE Access, Vol. 10, 57641-57654, 2022.
doi:10.1109/ACCESS.2022.3179005

16. Dey, Soumik, Sukomal Dey, and Shiban K. Koul, "Isolation improvement of MIMO antenna using novel EBG and hair-pin shaped DGS at 5G millimeter wave band," IEEE Access, Vol. 9, 162820-162834, 2021.
doi:10.1109/ACCESS.2021.3133324

17. Hannan, Saif, Mohammad Tariqul Islam, Norsuzlin Mohd Sahar, Kamarulzaman Mat, Muhammad E. H. Chowdhury, and Hatem Rmili, "Modified-segmented split-ring based polarization and angle-insensitive multi-band metamaterial absorber for X, Ku and K band applications," IEEE Access, Vol. 8, 144051-144063, 2020.
doi:10.1109/ACCESS.2020.3013011

18. Yang, Wan Jun, Yong Mei Pan, and Shao Yong Zheng, "Mutual coupling reduction in CP MIMO crossed-dipole antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 12, 2442-2446, Dec. 2022.
doi:10.1109/LAWP.2022.3196371

19. Krishna, O. N. V. R. and K. Kumar Naik, "Analysis of triangular antenna with two annular rings for multi-band applications," Journal of Critical Reviews, Vol. 7, No. 4, 189-191, 2020.

20. Amala Vijaya Sri, P., G. Srikanth, B. Vamsi Krishna, K. Kousalya, S. Rama Lavanya, K. Ooha, R. P. S. Chaitanya, B. Kalyan Kumar, K. Y. Srinivas, and K. Kumar Naik, "Enhancement of gain with coplanar isosceles triangular patch antenna for dual-band applications," 2017 Progress In Electromagnetics Research Symposium - Fall (PIERS - FALL), 2981-2984, Singapore, Nov. 2017.