Vol. 123
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-01-31
Compact Broadband Low-Pass Filter with Novel Fishbone Structure Based on Spoof Surface Plasmon Polariton
By
Progress In Electromagnetics Research M, Vol. 123, 95-103, 2024
Abstract
A compact spoof surface plasmon polariton (SSPP) low-pass filter is proposed. By adopting a novel fishbone structure, the effective depth of the groove is increased, reducing the filter width by 24.84%. The length of the filter is reduced by 22.23% with a new transmission structure. To intuitively display this structure, the filter is designed and fabricated. The area of the filter is 47.44 mm × 8 mm. The results demonstrate that the insertion and return losses are less than 3 dB and greater than 13 dB, respectively, in a wideband range of 0-10.00 GHz.
Citation
Haodong Xu, Fushun Nian, Jianqin Deng, and Muzhi Gao, "Compact Broadband Low-Pass Filter with Novel Fishbone Structure Based on Spoof Surface Plasmon Polariton," Progress In Electromagnetics Research M, Vol. 123, 95-103, 2024.
doi:10.2528/PIERM23112802
References

1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, Aug. 2003.
doi:10.1038/nature01937

2. Politano, A., H. K. Yu, D. Farías, and G. Chiarello, "Multiple acoustic surface plasmons in graphene/Cu (111) contacts," Physical Review B, Vol. 97, No. 3, 035414, Jan. 2018.
doi:10.1103/PhysRevB.97.035414

3. Politano, Antonio, Gennaro Chiarello, and Corrado Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Materials Science in Semiconductor Processing, Vol. 65, 88-99, Jul. 2017.
doi:10.1016/j.mssp.2016.05.002

4. Politano, Antonio and Gennaro Chiarello, "Graphene on Pt3Ni(1 1 1): A suitable platform for tunable charge doping, electron–phonon coupling and plasmonic excitations," 2D Materials, Vol. 4, No. 3, 035003, Jun. 2017.
doi:10.1088/2053-1583/aa78c2

5. Politano, A., C. Lamuta, and G. Chiarello, "Cutting a gordian knot: Dispersion of plasmonic modes in Bi2Se3 topological insulator," Applied Physics Letters, Vol. 110, No. 21, 211601, May 2017.
doi:10.1063/1.4984109

6. Politano, Antonio, Gennaro Chiarello, Barun Ghosh, Krishanu Sadhukhan, Chia-Nung Kuo, Chin Shan Lue, Vittorio Pellegrini, and Amit Agarwal, "3D dirac plasmons in the type-II Dirac semimetal PtTe2," Physical Review Letters, Vol. 121, No. 8, 086804, 2018.

7. Dutta, Debasis, Barun Ghosh, Bahadur Singh, Hsin Lin, Antonio Politano, Arun Bansil, and Amit Agarwal, "Collective plasmonic modes in the chiral multifold fermionic material CoSi," Physical Review B, Vol. 105, No. 16, 165104, Apr. 2022.
doi:10.1103/PhysRevB.105.165104

8. Abramovich, Shir, Debasis Dutta, Carlo Rizza, Sergio Santoro, Marco Aquino, Anna Cupolillo, Jessica Occhiuzzi, Mauro Francesco La Russa, Barun Ghosh, Daniel Farias, Andrea Locatelli, Danil W. Boukhvalov, Amit Agarwal, Efrem Curcio, Maya Bar Sadan, and Antonio Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2201473, Aug. 2022.
doi:10.1002/smll.202201473

9. Chiarello, Gennaro, Johannes Hofmann, Zhilin Li, Vito Fabio, Liwei Guo, Xiaolong Chen, Sankar Das Sarma, and Antonio Politano, "Tunable surface plasmons in weyl semimetals TaAs and NbAs," Physical Review B, Vol. 99, No. 12, 121401, Mar. 2019.
doi:10.1103/PhysRevB.99.121401

10. Politano, Antonio, Leonardo Viti, and Miriam S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 035504, Mar. 2017.
doi:10.1063/1.4977782

11. Liang, Fang, Liangliang Zhan, Tianyu Guo, Xing Wu, and Junhao Chu, "CVD-Grown 2D nonlayered NiSe as a broadband photodetector," Micromachines, Vol. 12, No. 9, 1066, Sep. 2021.
doi:10.3390/mi12091066

12. Politano, Antonio, Gennaro Chiarello, Zhilin Li, Vito Fabio, Lin Wang, Liwei Guo, Xiaolong Chen, and Danil W. Boukhvalov, "Toward the effective exploitation of topological phases of matter in catalysis: Chemical reactions at the surfaces of NbAs and TaAs Weyl semimetals," Advanced Functional Materials, Vol. 28, No. 23, 1800511, Jun. 2018.
doi:10.1002/adfm.201800511

13. Pan, Leidan, Yongle Wu, and Weimin Wang, "Bandpass filter with reconfigurable rejection and deep-upper-wideband harmonics suppression using spoof surface plasmon polaritons of hollowed-bow-tie cells," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 4, 1-9, 2023.
doi:10.1109/TMTT.2022.3217381

14. Zhu, Shuangshuang, Pin Wen, and Yuhuai Liu, "A compact filter based on spoof surface plasmon polariton waveguide for wide stopband suppression," IEEE Photonics Technology Letters, Vol. 34, No. 9, 475-478, May 2022.
doi:10.1109/LPT.2022.3166951

15. Lin, Zhongchao, Yukun Li, Liang Li, Yu-Tong Zhao, Junhua Xu, and Jianzhong Chen, "Miniaturized bandpass filter based on high-order mode of spoof surface plasmon polaritons loaded with capacitor," IEEE Transactions on Plasma Science, Vol. 51, No. 1, 254-260, Jan. 2023.
doi:10.1109/TPS.2022.3232850

16. Li, Jianxing, Junwei Shi, Kai-Da Xu, Ying-Jiang Guo, Anxue Zhang, and Qiang Chen, "Spoof surface plasmon polaritons developed from coplanar waveguides in microwave frequencies," IEEE Photonics Technology Letters, Vol. 32, No. 22, 1431-1434, Nov. 2020.
doi:10.1109/LPT.2020.3031065

17. Li, Jianxing, Kai-Da Xu, Junwei Shi, Ying-Jiang Guo, and Anxue Zhang, "Spoof surface plasmon polariton waveguide with switchable notched band," IEEE Photonics Technology Letters, Vol. 33, No. 20, 1147-1150, Oct. 2021.
doi:10.1109/LPT.2021.3109612

18. Feng, Wenjie, Yanhao Feng, Yongrong Shi, Suyang Shi, and Wenquan Che, "Novel differential bandpass filter using spoof surface plasmon polaritons," IEEE Transactions on Plasma Science, Vol. 48, No. 6, 2083-2088, Jun. 2020.
doi:10.1109/TPS.2020.2987037

19. Zhang, Dawei, Kuang Zhang, Qun Wu, Xumin Ding, and Xuejun Sha, "High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies," Optics Express, Vol. 25, No. 3, 2121-2129, 2017.

20. Zhang, Dawei, Kuang Zhang, Qun Wu, Ruiwei Dai, and Xuejun Sha, "Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency," Optics Letters, Vol. 43, No. 13, 3176-3179, 2018.

21. Kianinejad, Amin, Zhi Ning Chen, and Cheng-Wei Qiu, "Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, 1817-1825, Jun. 2015.

22. Pendry, J. B., L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, Aug. 2004.
doi:10.1126/science.1098999

23. Garcia-Vidal, F. J., L. Martín-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S97-S101, Feb. 2005.
doi:10.1088/1464-4258/7/2/013

24. O'Hara, J. F., R. D. Averitt, and A. J. Taylor, "Terahertz surface plasmon polariton coupling on metallic grating structures," Ultrafast Phenomena XIV, Vol. 79, 696-698, Niigata, Japan, Jul. 2005.

25. Williams, C. R., S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nature Photonics, Vol. 2, No. 3, 175-179, Mar. 2008.
doi:10.1038/nphoton.2007.301

26. Zhang, Dawei, Kuang Zhang, Qun Wu, Guohui Yang, and Xuejun Sha, "High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure," Optics Letters, Vol. 42, No. 14, 2766-2769, Jul. 2017.
doi:10.1364/OL.42.002766

27. Li, Luping, Lijuan Dong, Peng Chen, and Kai Yang, "A low insertion loss low-pass filter based on single comb-shaped spoof surface plasmon polaritons," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 8, 792-796, Oct. 2019.
doi:10.1017/S1759078719000564

28. Zhang, Xuewei, Shining Sun, Qiming Yu, Lingling Wang, Kun Liao, and Shaobin Liu, "Novel high-efficiency and ultra-compact low-pass filter using double-layered spoof surface plasmon polaritons," Microwave and Optical Technology Letters, Vol. 64, No. 6, 1056-1061, Jun. 2022.
doi:10.1002/mop.33256

29. Liu, Liangliang, Zhuo Li, Bingzheng Xu, Jia Xu, Chen Chen, and Changqing Gu, "Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons," Plasmonics, Vol. 12, No. 2, 439-444, Apr. 2017.
doi:10.1007/s11468-016-0283-5

30. Ma, Hui Feng, Xiaopeng Shen, Qiang Cheng, Wei Xiang Jiang, and Tie Jun Cui, "Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons," Laser & Photonics Reviews, Vol. 8, No. 1, 146-151, Jan. 2014.

31. Shen, Xiaopeng, Tie Jun Cui, Diego Martin-Cano, and Francisco J. Garcia-Vidal, "Conformal surface plasmons propagating on ultrathin and flexible films," Proceedings of the National Academy of Sciences, Vol. 110, No. 1, 40-45, Jan. 2013.

32. Nagpal, Prashant, Nathan C. Lindquist, Sang-Hyun Oh, and David J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science, Vol. 325, No. 5940, 594-597, Jul. 2009.
doi:10.1126/science.1174655

33. Chen, Yongyao, Zhenming Song, Yanfeng Li, Minglie Hu, Qirong Xing, Zhigang Zhang, Lu Chai, and Ching-Yue Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Optics Express, Vol. 14, No. 26, 13021-13029, 2006.
doi:10.1364/OE.14.013021

34. Maier, Stefan A., Steve R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Physical Review Letters, Vol. 97, No. 17, 176805, Oct. 2006.
doi:10.1103/PhysRevLett.97.176805

35. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, Apr. 2005.
doi:10.1126/science.1109043

36. Moreno, Esteban, Sergio G. Rodrigo, Sergey I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Physical Review Letters, Vol. 100, No. 2, 023901, Jan. 2008.
doi:10.1103/PhysRevLett.100.023901

37. Gan, Qiaoqiang, Zhan Fu, Yujie J. Ding, and Filbert J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Physical Review Letters, Vol. 100, No. 25, 256803, Jun. 2008.
doi:10.1103/PhysRevLett.100.256803

38. Kianinejad, Amin, Zhi Ning Chen, and Cheng-Wei Qiu, "Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 10, 3078-3086, Oct. 2016.
doi:10.1109/TMTT.2016.2604807

39. Shen, Xiaopeng and Tie Jun Cui, "Planar plasmonic metamaterial on a thin film with nearly zero thickness," Applied Physics Letters, Vol. 102, No. 21, 211909, May 2013.
doi:10.1063/1.4808350

40. Xu, Kai-Da, Han Xu, and Yanhui Liu, "Low-profile filtering end-fire antenna integrated with compact bandstop filtering element for high selectivity," IEEE Access, Vol. 7, 8398-8403, 2019.

41. Farokhipour, Ehsan, Mohammad Mehrabi, Nader Komjani, and Can Ding, "A spoof surface plasmon polaritons (SSPPs) based dual-band-rejection filter with wide rejection bandwidth," Sensors, Vol. 20, No. 24, 7311, Dec. 2020.

42. Mazdouri, Behnam, Mohammad Mahdi Honari, and Rashid Mirzavand, "Miniaturized spoof SPPs filter based on multiple resonators or 5G applications," Scientific Reports, Vol. 11, No. 1, 22557, Nov. 2021.
doi:10.1038/s41598-021-01944-6

43. Moznebi, Ali-Reza, Kambiz Afrooz, and Arash Arsanjani, "Broadband bandpass filter and filtering power divider with enhanced slow-wave effect, compact size, and wide stopband based on butterfly-shaped spoof SPPs," AEU-International Journal of Electronics and Communications, Vol. 145, 154084, Feb. 2022.
doi:10.1016/j.aeue.2021.154084

44. Cui, Yue, Kai-Da Xu, and Qiang Chen, "Bandpass filter using half-mode substrate integrated plasmonic waveguide," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 29-30, Hong Kong, Dec. 2020.
doi:10.1109/APMC47863.2020.9331519

45. Fernandez-Dominguez, A. I., L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, "Spoof surface plasmon polariton modes propagating along periodically corrugated wires," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, No. 6, 1515-1521, Nov.-Dec. 2008.
doi:10.1109/JSTQE.2008.918107

46. Wu, Bian, Chi Fan, Xin Feng, Yu-Tong Zhao, Jing Ning, Dong Wang, and Tao Su, "Dynamically tunable filtering attenuator based on graphene integrated microstrip resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5270-5278, Dec. 2020.
doi:10.1109/TMTT.2020.3017197

47. Yi, Yang and An-Qi Zhang, "A tunable graphene filtering attenuator based on effective spoof surface plasmon polariton waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5169-5177, Dec. 2020.
doi:10.1109/TMTT.2020.3026694

48. Tian, Dou, Amin Kianinejad, Anxue Zhang, and Zhi Ning Chen, "Graphene-based dynamically tunable attenuator on spoof surface plasmon polaritons waveguide," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 6, 388-390, Jun. 2019.
doi:10.1109/LMWC.2019.2913964